Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(9): 3928-3933    DOI: 10.1088/1674-1056/18/9/052
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of alloying Re and Ru in the edge-dislocation core of the Ni/Ni3Al interface

Wang Cong(王聪)a) and Wang Chong-Yu(王崇愚)a)b)
a Department of Physics, Tsinghua University, Beijing 100084, China; b The International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  Investigations of alloying Re and Ru in the [110](001) dislocation core of the Ni/Ni3Al interface were conducted within the framework of density functional theory. The energetic calculations show that both elements can stabilize the [110](001) dislocation core. In the dislocation core region, Re and Ru prefer to substitute for Ni on the site in the $\gamma$-phase. Re is easier to segregate into the dislocation core region as compared with Ru; it especially prefers to substitute for Ni on the $\gamma$-(Ni)1 site.
Keywords:  nickel alloys      dislocation-structure      ab initio electron theory  
Received:  09 December 2008      Revised:  24 April 2009      Accepted manuscript online: 
PACS:  68.35.Dv (Composition, segregation; defects and impurities)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  64.75.-g (Phase equilibria)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No 2006CB605102).

Cite this article: 

Wang Cong(王聪) and Wang Chong-Yu(王崇愚) Effect of alloying Re and Ru in the edge-dislocation core of the Ni/Ni3Al interface 2009 Chin. Phys. B 18 3928

[1] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[2] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[3] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[4] Interaction of two symmetric monovacancy defects in graphene
Wen-Yan Xu(徐文焱), Li-Zhi Zhang(张礼智), Li Huang(黄立), Yan-De Que(阙炎德), Ye-Liang Wang(王业亮), Xiao Lin(林晓), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046801.
[5] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[6] Direct characterization of boron segregation at random and twin grain boundaries
Xiang-Long Li(李向龙), Ping Wu(吴平), Rui-Jie Yang(杨锐杰), Shi-Ping Zhang(张师平), Sen Chen(陈森), Xue-Min Wang(王学敏), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2017, 26(8): 086802.
[7] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[8] Annealing effect of platinum-incorporated nanowires created by focused ion/electron-beam-induced deposition
Fang Jing-Yue (方靖岳), Qin Shi-Qiao (秦石乔), Zhang Xue-Ao (张学骜), Liu Dong-Qing (刘东青), Chang Sheng-Li (常胜利). Chin. Phys. B, 2014, 23(8): 088111.
[9] Effect of InxGa1-xN “continuously graded” buffer layer on InGaN epilayer grown by metalorganic chemical vapor deposition
Qian Wei-Ning (钱卫宁), Su Shi-Chen (宿世臣), Chen Hong (陈弘), Ma Zi-Guang (马紫光), Zhu Ke-Bao (朱克宝), He Miao (何苗), Lu Ping-Yuan (卢平元), Wang Geng (王耿), Lu Tai-Ping (卢太平), Du Chun-Hua (杜春花), Wang Qiao (王巧), Wu Wen-Bo (吴汶波), Zhang Wei-Wei (张伟伟). Chin. Phys. B, 2013, 22(10): 106106.
[10] Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces
Song Bo-Qun (宋博群), Pan Li-Da (潘理达), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2013, 22(9): 096801.
[11] Formations and morphological stabilities of ultrathin CoSi2 films
Zhu Zhi-Wei (朱志炜), Gao Xin-Dong (高歆栋), Zhang Zhi-Bin (张志滨), Piao Ying-Hua (朴颖华), Hu Cheng (胡成), Zhang David-Wei (张卫), Wu Dong-Ping (吴东平 ). Chin. Phys. B, 2012, 21(8): 087304.
[12] Suppressing the hot carrier injection degradation rate in total ionizing dose effect hardened nMOSFETs
Chen Jian-Jun(陈建军), Chen Shu-Ming(陈书明), Liang Bin(梁斌), He Yi-Bai(何益百), Chi Ya-Qing(池雅庆), and Deng Ke-Feng(邓科峰) . Chin. Phys. B, 2011, 20(11): 114220.
[13] Study on the defect-related emissions in the light self-ion-implanted Si films by a silicon-on-insulator structure
Wang Chong(王茺), Yang Yu(杨宇), Yang Rui-Dong(杨瑞东), Li Liang(李亮), Xiong Fei(熊飞), and Bao Ji-Ming . Chin. Phys. B, 2011, 20(2): 026802.
[14] STM observation of pit formation and evolution during the epitaxial growth of Si on Si(001) surface
Xu Mao-Jie(徐茂杰), Jeyanthinath Mayandi, Wang Xue-Sen(王学森), Jia Jin-Feng(贾金锋),Xue Qi-Kun(薛其坤), and Dou Xiao-Ming(窦晓鸣). Chin. Phys. B, 2010, 19(10): 106102.
[15] Damage of low-energy ion irradiation on copper nanowire: molecular dynamics simulation
Zou Xue-Qing(邹雪晴), Xue Jian-Ming(薛建明), and Wang Yu-Gang(王宇钢) . Chin. Phys. B, 2010, 19(3): 036102.
No Suggested Reading articles found!