Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 1109-1115    DOI: 10.1088/1674-1056/18/3/045
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Lateral stress-induced propagation characteristics in photonic crystal fibres

Tian Hong-Da(田宏达), Yu Zhong-Yuan(俞重远), Han Li-Hong(韩利红), and Liu Yu-Min(刘玉敏)
Institute of Optical Communication and Optoelectronics, Beijing University of Posts and Telecommunications, linebreak Beijing 100876, China; Key Laboratory of Optical Communication and Lightwave Technologies Ministry of Education linebreak (Beijing University of Posts and Telecommunications), Beijing 100876, China
Abstract  Using the finite element method, this paper investigates lateral stress-induced propagation characteristics in a photonic crystal fibre of hexagonal symmetry. The results of simulation show the strong stress dependence of effective index of the fundamental guided mode, phase modal birefringence and confinement loss. It also finds that the contribution of the geometrical effect that is related only to deformation of the photonic crystal fibre and the stress-related contribution to phase modal birefringence and confinement loss are entirely different. Furthermore, polarization-dependent stress sensitivity of confinement loss is proposed in this paper.
Keywords:  propagation characteristics      photonic crystal fibre      lateral stress      stress-optical effect  
Received:  03 June 2008      Revised:  31 July 2008      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60644004), and the State Key Development Program for Basic Research of China (Grant No 2003CB314901).

Cite this article: 

Tian Hong-Da(田宏达), Yu Zhong-Yuan(俞重远), Han Li-Hong(韩利红), and Liu Yu-Min(刘玉敏) Lateral stress-induced propagation characteristics in photonic crystal fibres 2009 Chin. Phys. B 18 1109

[1] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[2] Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres
Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港) . Chin. Phys. B, 2012, 21(6): 068404.
[3] Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity
Yang Han-Rui(杨汉瑞), Li Xu-You(李绪友), Hong Wei(洪伟), and Hao Jin-Hui(郝金会) . Chin. Phys. B, 2012, 21(2): 024211.
[4] High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz
Yin Guo-Bing(尹国冰), Li Shu-Guang(李曙光), Wang Xiao-Yan(王晓琰), and Liu Shuo(刘硕) . Chin. Phys. B, 2011, 20(9): 090701.
[5] Optical parametric chirped pulse amplification based on photonic crystal fibre
Wang He-Lin(王河林)a), Yang Ai-Jun(杨爱军), Leng Yu-Xin(冷雨欣), Wang Cheng(王乘), Xu Zhi-Zhan(徐至展), and Hou Lan-Tian(候蓝田). Chin. Phys. B, 2011, 20(8): 084208.
[6] Complete leaky mode coupling in dual-core photonic crystal fibre based on the coupled-mode theory
Yuan Jin-Hui(苑金辉), Yu Chong-Xiu(余重秀), Sang Xin-Zhu(桑新柱), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(6): 064101.
[7] Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2011, 20(5): 054210.
[8] Improved high birefringence photonic crystal fibres with dispersion flattened and single mode operation
Fu Bo(付博), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Zhang Lei(张磊), and Zhang Mei-Yan(张美艳). Chin. Phys. B, 2011, 20(2): 024209.
[9] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Xin Xiang-Jun(忻向军), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(2): 024213.
[10] Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography
Yin Jun(尹君), Yu Ling-Yao(于凌尧), Liu Xing(刘星), Wan Hui(万辉), Lin Zi-Yang(林子扬), and Niu Han-Ben(牛憨笨). Chin. Phys. B, 2011, 20(1): 014206.
[11] A novel method of rapidly modeling optical properties of actual photonic crystal fibres
Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷). Chin. Phys. B, 2010, 19(8): 084209.
[12] Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Li Shu-Guang (李曙光), Zhou Gui-Yao (周桂耀), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2010, 19(7): 074218.
[13] High energy and long pulse generation with high-birefringence photonic crystal fibre and laser-diode pumped regenerative amplifier
Wang He-Lin(王河林), Wang Cheng(王承), Leng Yu-Xin(冷雨欣), Xu Zhi-Zhan(徐至展), and Hou Lan-Tian(候蓝田). Chin. Phys. B, 2010, 19(5): 054212.
[14] A dark hollow beam from a selectively liquid-filled photonic crystal fibre
Zhang Mei-Yan(张美艳), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Fu Bo(付博), and Zhang Lei(张磊). Chin. Phys. B, 2010, 19(4): 047103.
[15] Efficient frequency upshift of 10fs laser pulses propagating in a 5-cm length birefringent photonic crystal fibre
Li Shu-Guang(李曙光), Zhang Wei(张炜), Wei Zhi-Yi(魏志义), Zhou Gui-Yao(周桂耀), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2009, 18(5): 1996-2001.
No Suggested Reading articles found!