Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(5): 1535-1544    DOI: 10.1088/1674-1056/17/5/001
GENERAL   Next  

A hybrid scheme for computing incompressible two-phase flows

Zhou Jun(周军), Cai Li(蔡力), and Zhou Feng-Qi(周凤岐)
Institute of the Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier--Stokes equations are solved by our semi-discrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme.
Keywords:  two-phase flow      incompressible flow      numerical method  
Received:  11 July 2007      Revised:  21 September 2007      Accepted manuscript online: 
PACS:  47.55.-t (Multiphase and stratified flows)  
  47.10.ad (Navier-Stokes equations)  

Cite this article: 

Zhou Jun(周军), Cai Li(蔡力), and Zhou Feng-Qi(周凤岐) A hybrid scheme for computing incompressible two-phase flows 2008 Chin. Phys. B 17 1535

[1] Impact mechanism of gas temperature in metal powder production via gas atomization
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Bo-Rui Du(杜博睿), Shi-Yuan Shen(申世远), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 054702.
[2] Numerical simulations of strong-field processes in momentum space
Yan Xu(徐彦), Xue-Bin Bian(卞学滨). Chin. Phys. B, 2020, 29(2): 023202.
[3] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[4] Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
Zheng Fu(付峥), Shi-Yu Wu(吴士玉), Kai-Xin Liu(刘凯欣). Chin. Phys. B, 2016, 25(6): 064701.
[5] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[6] Second-order two-scale analysis and numerical algorithms for the hyperbolic-parabolic equations with rapidly oscillating coefficients
Dong Hao (董灏), Nie Yu-Feng (聂玉峰), Cui Jun-Zhi (崔俊芝), Wu Ya-Tao (武亚涛). Chin. Phys. B, 2015, 24(9): 090204.
[7] Three-dimensional simulation method of multipactor in microwave components for high-power space application
Li Yun (李韵), Cui Wan-Zhao (崔万照), Zhang Na (张娜), Wang Xin-Bo (王新波), Wang Hong-Guang (王洪广), Li Yong-Dong (李永东), Zhang Jian-Feng (张剑锋). Chin. Phys. B, 2014, 23(4): 048402.
[8] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[9] Markov transition probability-based network from time series for characterizing experimental two-phase flow
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德). Chin. Phys. B, 2013, 22(5): 050507.
[10] Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension
Xie Hai-Qiong (谢海琼), Zeng Zhong (曾忠), Zhang Liang-Qi (张良奇), Liang Gong-You (梁功有), Hiroshi Mizuseki, Yoshiyuki Kawazoe. Chin. Phys. B, 2012, 21(12): 124703.
[11] A two scale nonlinear fractal sea surface model in a one dimensional deep sea
Xie Tao(谢涛),Zou Guang-Hui(邹光辉), William Perrie, Kuang Hai-Lan(旷海兰), and Chen Wei(陈伟). Chin. Phys. B, 2010, 19(5): 059201.
[12] Numerical method of studying nonlinear interactions between long waves and multiple short waves
Xie Tao(谢涛), Kuang Hai-Lan(旷海兰), William Perrie, Zou Guang-Hui(邹光辉), Nan Cheng-Feng(南撑峰), He Chao(何超), Shen Tao(沈涛), and Chen Wei(陈伟). Chin. Phys. B, 2009, 18(7): 3090-3098.
[13] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[14] Numerical study on the thermo-stress of ZrO2 thermal and barrier coatings by high-intensity pulsed ion beam irradiation
Wu Di(吴迪),Liu Chen(刘臣), Zhu Xiao Peng(朱小鹏), and Lei Ming Kai(雷明凯) . Chin. Phys. B, 2009, 18(11): 4976-4980.
No Suggested Reading articles found!