Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 059201    DOI: 10.1088/1674-1056/19/5/059201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

A two scale nonlinear fractal sea surface model in a one dimensional deep sea

Xie Tao(谢涛)a)b),Zou Guang-Hui(邹光辉)a), William Perrieb), Kuang Hai-Lan(旷海兰)a), and Chen Wei(陈伟)a)
a School of Information Engineering of Wuhan University of Technology, Wuhan 430070, China; b Fisheries and Oceans Canada, Bedford Institute of Oceanography, B2Y 4A2, Dartmouth, NS, Canada
Abstract  Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed.
Keywords:  fractal sea surface models      nonlinear interaction      numerical method  
Received:  17 July 2009      Revised:  26 October 2009      Accepted manuscript online: 
PACS:  92.10.Hm (Ocean waves and oscillations)  
  92.10.Dh (Deep ocean processes)  
  91.50.Iv (Marine magnetics and electromagnetics)  
Fund: Project supported by Chinese National High Technology Research and Development (863) Program (Grant No.~2007AA12Z170), National Natural Science Foundation of China (Grant No.~40706058), Wuhan Youth Science and Technology Chen Guang Program (Grant No.~200850731388) and the wind and waves component of the Canadian Space Agency GRIP project entitled `Building Satellite Data into Fisheries and Oceans Operational Systems'.

Cite this article: 

Xie Tao(谢涛),Zou Guang-Hui(邹光辉), William Perrie, Kuang Hai-Lan(旷海兰), and Chen Wei(陈伟) A two scale nonlinear fractal sea surface model in a one dimensional deep sea 2010 Chin. Phys. B 19 059201

[1] Beckmann P and Spizzichino A 1963 The Scnttering of Electromagnetic Waves from Rough Surface (New York: Pergamon) p503
[2] Mandelbrot B B 1983 The Fractal Geometry of Nature (San Francisco, CA: Freeman) p458
[3] Jakeman E 1982 J. Opt. Soc. Am. 72 1034
[4] Jordan D L, Hollins R C and Jakeman E 1983 Appl. Phys. B 31 179
[5] Jaggard D L and Sun X 1990 J. Opt. Soc. Am. A 7 1131
[6] Berizzi F, Mese E D and Pinelli G 1999 IEE Proceedings Radar Sonar and Navigation 146 55
[7] Berizzi F, Greco M V and Verrazzani L 2000 IEE Proceedings Radar Sonar and Navigation 147 189
[8] Berizzi F and Mese E D 2002 IEEE Trans. on Antennas and Propagation 50 426
[9] Berizzi F, Mese E D and Martorella M 2003 International Journal of Remote Sensing Taylor and Francis Group 25 1265
[10] Martorella M, Berizzi F and Mese E D 2004 IEEE Trans. Antennas and Propagation 52 1193
[11] Xie T, Li B H Chen W J and He Y J 2004 Proceeding of IGARSS'04 4 2772
[12] Xie T, He Y J, Chen W J and Li B H 2005 Acta Electron. Sin. 33 423
[13] Yang J L, Guo L X and Wan J W 2007 Acta Phys. Sin. 56 2106 (in Chinese)
[14] Xie T, Kuang H L, William P, Zou G H, Nan C F, He C, Shen T and Chen W 2009 Chin. Phys. B 18 3090
[15] Ren X C and Guo L X 2008 Chin. Phys. B 17 2491
[16] Longuet-Higgins M S and Stewart R W 1960 J. Fluid Mech. 8 565
[17] He Y J and Alpers W 2003 J. Geophys. Res. 108 3205
[18] Johnson J T, Jakov V T and Brown G S 2001 IEEE Trans. Geosci. Remote Sensing 39 2411
[19] West B J, Brueckner K A and Janda R S 1987 J. Geophys. Res. 92 11803
[20] Donelan M A 1987 Johns Hopkins APL Technical Digest 8 18
[1] Numerical simulations of strong-field processes in momentum space
Yan Xu(徐彦), Xue-Bin Bian(卞学滨). Chin. Phys. B, 2020, 29(2): 023202.
[2] Second-order two-scale analysis and numerical algorithms for the hyperbolic-parabolic equations with rapidly oscillating coefficients
Dong Hao (董灏), Nie Yu-Feng (聂玉峰), Cui Jun-Zhi (崔俊芝), Wu Ya-Tao (武亚涛). Chin. Phys. B, 2015, 24(9): 090204.
[3] Three-dimensional simulation method of multipactor in microwave components for high-power space application
Li Yun (李韵), Cui Wan-Zhao (崔万照), Zhang Na (张娜), Wang Xin-Bo (王新波), Wang Hong-Guang (王洪广), Li Yong-Dong (李永东), Zhang Jian-Feng (张剑锋). Chin. Phys. B, 2014, 23(4): 048402.
[4] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[5] Maximal and total skew information of three-qubit system obtained using nonlinear interaction models
Sun Hong-Gui(孙红贵), Zhang Li-Hua(章礼华), Liu Wan-Fang(刘万芳), and Li Chun-Jie(李春杰) . Chin. Phys. B, 2012, 21(1): 010301.
[6] Maximal and total skew information for a two-qubit system using nonlinear interaction models
Sun Hong-Gui(孙红贵), Liu Wan-Fang(刘万芳), and Li Chun-Jie(李春杰) . Chin. Phys. B, 2011, 20(9): 090301.
[7] Numerical method of studying nonlinear interactions between long waves and multiple short waves
Xie Tao(谢涛), Kuang Hai-Lan(旷海兰), William Perrie, Zou Guang-Hui(邹光辉), Nan Cheng-Feng(南撑峰), He Chao(何超), Shen Tao(沈涛), and Chen Wei(陈伟). Chin. Phys. B, 2009, 18(7): 3090-3098.
[8] Numerical study on the thermo-stress of ZrO2 thermal and barrier coatings by high-intensity pulsed ion beam irradiation
Wu Di(吴迪),Liu Chen(刘臣), Zhu Xiao Peng(朱小鹏), and Lei Ming Kai(雷明凯) . Chin. Phys. B, 2009, 18(11): 4976-4980.
[9] A hybrid scheme for computing incompressible two-phase flows
Zhou Jun(周军), Cai Li(蔡力), and Zhou Feng-Qi(周凤岐). Chin. Phys. B, 2008, 17(5): 1535-1544.
[10] Nonlinear interaction of resonator photons with parametric magnon pairs
Shi Qing-Fan (史庆藩), Yan Xue-Qun (闫学群), Liu Xue-Guan (刘学观). Chin. Phys. B, 2003, 12(4): 394-398.
No Suggested Reading articles found!