Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(10): 3880-3893    DOI: 10.1088/1674-1056/17/10/055
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Surface plasmon polariton and mode transformation in a nanoscale lossy metallic cylindrical cable

Yang Peng-Fei(杨鹏飞), Gu Ying(古英), and Gong Qi-Huang(龚旗煌)
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
Abstract  A theoretical investigation on the surface plasmon polariton in a gold cylindrical nanocable is presented. By solving a complete set of Maxwell's equations in the nanocable (with a $50$ nm radius gold nanocore, 10--300 nm silica layer, and 30--200 nm gold nanocladding), the dispersion relations on the optical frequency and on the silica thickness are discussed. When the silica thickness varies from $50$ to $250$ nm, at a fixed wavelength, the strong coupling between the gold nanocore and the nanocladding leads to a symmetric-like surface mode and an antisymmetric-like surface mode in the nanocable. The transformation between the surface mode and the waveguide mode in this structure is also investigated. The results will be helpful for understanding the surface waves in the subwavelength structures.
Keywords:  nanocable      surface plasmons      mode transformation  
Received:  03 April 2008      Accepted manuscript online: 
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.22.Lp (Collective excitations)  
  61.46.-w (Structure of nanoscale materials)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10674009, 10521002 and 10434020) and the National Key Development Program for Basic Research of China (Grant No 2007CB307001).

Cite this article: 

Yang Peng-Fei(杨鹏飞), Gu Ying(古英), and Gong Qi-Huang(龚旗煌) Surface plasmon polariton and mode transformation in a nanoscale lossy metallic cylindrical cable 2008 Chin. Phys. B 17 3880

[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[6] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[7] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[8] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[9] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[10] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[11] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[12] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[13] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[14] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[15] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
No Suggested Reading articles found!