Abstract By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.
Fund: Project supported by the
National Natural Science Foundation of China (Grant No~60566002) and the
project for excellence subject-directors of Inner Mongolia Autonomous Region
of China.
Cite this article:
Hao Guo-Dong(郝国栋), Ban Shi-Liang(班士良), and Jia Xiu-Min(贾秀敏) Pressure effect on the electron mobility in AlAs/GaAs quantum wells 2007 Chinese Physics 16 3766
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.