Abstract In this paper the analytical expression of free energy expressed by small parameter r of a weakly interacting Fermi gas trapped in weak magnetic field is derived by using `the maximum approximation' method and the ensemble theory. Based on the derived expression, the exact instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field at both high and low temperatures are given. From the instability conditions we get the following two results. (1) At the whole low-temperature extent, whether the interactions are repulsive or attractive with $\alpha n+4\varepsilon_{\rm F}$ (n and $\varepsilon_{\rm F}$ denote the particle-number density and the Fermi energy respectively, $\alpha=4\pi a\hbar^2/m$, and $a$ is s-wave scattering length) positive, there is a lower-limit magnetic field of instability; in addition, there is an upper-limit magnetic field for the system of attractive interactions with $(\alpha n+4\varepsilon_{\rm F}/3)$ negative. (2) At the whole high-temperature extent, the system with repulsive interactions is always stable, but for the system with attractive interactions, the greater the scattering length of attractive interactions $|a|$ is, the stronger the magnetic field is and the larger the particle-number density is, the bigger the possibility of instability in the system will be.
Received: 25 April 2006
Revised: 29 May 2006
Accepted manuscript online:
Men Fu-Dian(门福殿) and Liu Hui(刘慧) The instability conditions of a weakly interacting Fermi gas trapped in weak magnetic field 2006 Chinese Physics 15 2856
Design and high-power test of 800-kW UHF klystron for CEPC Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[15]
Synchronization of nanowire-based spin Hall nano-oscillators Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.