Abstract We demonstrate a special four-probe scanning tunnelling microscope (STM) system in ultrahigh vacuum (UHV), which can provide coarse positioning for every probe independently with the help of scanning electron microscope (SEM) and fine positioning down to nanometre using the STM technology. The system allows conductivity measurement by means of a four-point probe method, which can draw out more accurate electron transport characteristics in nanostructures, and provides easy manipulation of low dimension materials. All measurements can be performed in variable temperature (from 30K to 500K), magnetic field (from 0 to 0.1T), and different gas environments. Simultaneously, the cathodoluminescence (CL) spectrum can be achieved through an optical subsystem. Test measurements using some nanowire samples show that this system is a powerful tool in exploring electron transport characteristics and spectra in nanoscale physics.
Received: 10 October 2004
Revised: 03 March 2005
Accepted manuscript online:
Fund: Project supported by the Chinese Academy of Sciences, the National High Technology Research and Development Program of China, the State Key Development Program for Basic Research of China, and the National Natural Science Foundation of China (Grant Nos 90
Cite this article:
Lin Xiao (林晓), He Xiao-Bo (贺晓波), Lu Jun-Ling (路军岭), Gao Li (高利), Huan Qing (郇庆), Shi Dong-Xia (时东霞), Gao Hong-Jun (高鸿钧) Four-probe scanning tunnelling microscope with atomic resolution for electrical and electro-optical property measurements of nanosystems 2005 Chinese Physics 14 1536
Integrated, reliable laser system for an 87Rb cold atom fountain clock Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.