Please wait a minute...
Chinese Physics, 2005, Vol. 14(11): 2226-2230    DOI: 10.1088/1009-1963/14/11/014
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Ultrafast third-order optical nonlinearity of several sandwich-type phthalocyaninato and porphyrinato europium complexes

Huang Wen-Tao (黄文涛)a, Li Yan (李焱)a, Xiang Hong (向红)a, Yang Hong (杨宏)a, Gong Qi-Huang (龚旗煌)a, Huang Yan-Yi (黄岩谊)b, Huang Chun-Hui (黄春辉)b, Jiang Jian-Zhuang (姜建壮)c 
a State Key Laboratory for Mesoscopic Physics and Department of Physics,Peking University, Beijing 100871, China; b State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry, Peking University, Beijing 100871, China; Department of Chemistry, Shandong University, Jinan 250100, China
Abstract  The third-order optical nonlinearity of two sandwich-type phthalocyaninato and porphyrinato europium complexes, including double- and triple-deckers Eu[Pc(OC5H11)8]2, Eu2(Pc)(TPP)2, Pc=phthalocyanine, TPP=5, 10, 15, 20- tetraphenylporphyrinate), was investigated by using the femtosecond time-resolved optical Kerr gate method at 830 nm wavelength. Their second-order hyperpolarizability is estimated to be 0.74×10-30esu and 3.0×10-30esu respectively. This exhibits an evident enhancement in comparison with 0.47×10-30esu for one-decker Eu(Pc)(acac) (acac=acetylacetonate), which is also measured under the same conditions. The enhancement is attributed to the introduction of lanthanide metal to the large \pi -conjugated system, intermacrocycle interaction and two-photon resonance etc.
Keywords:  ultrafast third-order optical nonlinearity      phthalocyanine      porphyrin  
Received:  04 March 2005      Revised:  11 April 2005      Accepted manuscript online: 
PACS:  42.65.An (Optical susceptibility, hyperpolarizability)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  78.40.Me (Organic compounds and polymers)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the National Key Research Program of China (Grant No TG1999075209) and the National Natural Science Foundation of China (Grant Nos 10434020, 90206003 and 60378012).

Cite this article: 

Huang Wen-Tao (黄文涛), Li Yan (李焱), Xiang Hong (向红), Yang Hong (杨宏), Gong Qi-Huang (龚旗煌), Huang Yan-Yi (黄岩谊), Huang Chun-Hui (黄春辉), Jiang Jian-Zhuang (姜建壮) Ultrafast third-order optical nonlinearity of several sandwich-type phthalocyaninato and porphyrinato europium complexes 2005 Chinese Physics 14 2226

[1] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[2] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[3] Thin-film growth behavior of non-planar vanadium oxide phthalocyanine
Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2019, 28(8): 088101.
[4] Numerical analyses on optical limiting performances of chloroindium phthalocyanines with different substituent positions
Yu-Jin Zhang(张玉瑾), Xing-Zhe Li(李兴哲), Ji-Cai Liu(刘纪彩), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2016, 25(1): 013302.
[5] Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface
Yan Ling-Hao (闫凌昊), Wu Rong-Ting (武荣庭), Bao De-Liang (包德亮), Ren Jun-Hai (任俊海), Zhang Yan-Fang (张艳芳), Zhang Hai-Gang (张海刚), Huang Li (黄立), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Huan Qing (郇庆), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 076802.
[6] A novel solution-based self-assembly approach to preparing ultralong titanyl phthalocyanine sub-micron wires
Zhu Zong-Peng (朱宗鹏), Wei Bin (魏斌), Zhang Jian-Hua (张建华), Wang Jun (王军). Chin. Phys. B, 2014, 23(7): 077202.
[7] Multi-polar resistance switching and memory effect in copper phthalocyanine junctions
Qiao Shi-Zhu (乔士柱), Kang Shi-Shou (康仕寿), Qin Yu-Feng (秦羽丰), Li Qiang (李强), Zhong Hai (钟海), Kang Yun (康韵), Yu Shu-Yun (于淑云), Han Guang-Bing (韩广兵), Yan Shi-Shen (颜世申), Mei Liang-Mo (梅良模). Chin. Phys. B, 2014, 23(5): 058501.
[8] Analysis of vibrational spectra of nano-bio molecules:Application to metalloporphrins
K Srinivasa Rao, G Srinivas, J. Vijayasekhar, V. U. M. Rao, Y. Srinivas, K. Sunil Babu, V. Sunndadara Siva Kumar, A. Hanumaiah. Chin. Phys. B, 2013, 22(9): 090304.
[9] Differences in adsorption of FePc on coinage metal surfaces
R.A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁). Chin. Phys. B, 2013, 22(6): 063101.
[10] Increased performance of an organic light-emitting diode by employing a zinc phthalocyanine based composite hole transport layer
Guo Run-Da (郭闰达), Yue Shou-Zhen (岳守振), Wang Peng (王鹏), Chen Yu (陈宇), Zhao Yi (赵毅), Liu Shi-Yong (刘式墉). Chin. Phys. B, 2013, 22(12): 127304.
[11] Organic photovoltaic cells with copper (Ⅱ) tetra-methyl substituted phthalocyanine
Xu Zong-Xiang (许宗祥), Roy V. A. L.. Chin. Phys. B, 2013, 22(12): 128505.
[12] Aluminium phthalocyanine chloride thin films for temperature sensing
Muhammad Tariq Saeed Chani, Abdullah M. Asiri, Kh. S. Karimov, Atif Khan Niaz, Sher Bhadar Khan, Khalid. A. Alamry. Chin. Phys. B, 2013, 22(11): 118101.
[13] Interfacial electronic structure at a metal–phthalocyanine/graphene interface:Copper–phthalocyanine versus iron–phthalocyanine
Ye Wei-Guo (叶伟国), Liu Dan (刘丹), Peng Xiao-Feng (彭啸峰), Dou Wei-Dong (窦卫东). Chin. Phys. B, 2013, 22(11): 117301.
[14] A shortcut for determining growth mode
R. A. Rehman, Cai Yi-Liang (蔡亦良), Zhang Han-Jie (张寒洁), Wu Ke (吴珂), Dou Wei-Dong (窦卫东), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁). Chin. Phys. B, 2013, 22(10): 107202.
[15] Self-assembly and growth of manganese phthalocyanine on an Au(111) surface
Jiang Yu-Hang(姜宇航), Liu Li-Wei(刘立巍), Yang Kai(杨锴), Xiao Wen-De(肖文德), and Gao Hong-Jun(高鸿钧) . Chin. Phys. B, 2011, 20(9): 096401.
No Suggested Reading articles found!