Please wait a minute...
Chinese Physics, 2003, Vol. 12(1): 25-32    DOI: 10.1088/1009-1963/12/1/305
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

The equivalence between B-W and K-G band R-S equations

Huang Shi-Zhong (黄时中)ab, Ruan Tu-Nan (阮图南)b, Wu Ning (吴 宁)c, Zheng Zhi-Peng (郑志鹏)c
a Department of Physics, Anhui Normal University, Wuhu 241000, China; b Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China; c Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100039, China
Abstract  The equivalence between the Bargmann--Wigner (B-W) equations and the Klein--Gordon (K-G) equations for integral spin, and the Rarita--Schwinger (R-S) equations for half integral spin is established by explicit derivation, starting from the lowest spin cases. It is demonstrated that all the constraints or subsidiary conditions imposed on the K-G or R-S equations are included in the B-W equations.
Keywords:  higher spins      Bargmann--Wigner equations      Klein--Gordon equations      Rarita--Schwinger equations  
Received:  07 May 2002      Revised:  31 July 2002      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  03.65.Pm (Relativistic wave equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 19947001, 90103010 and 19991480), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 97035807), the Beijing Positive-Negative Electron Collision National Laboratory of China, the Center for Theoretical Nuclear Physics of Lanzhou Heavy Ion Accelerator National Laboratory of China, and the Natural Science Foundation of Anhui Province, China (Grant No 2001KJ109).

Cite this article: 

Huang Shi-Zhong (黄时中), Ruan Tu-Nan (阮图南), Wu Ning (吴 宁), Zheng Zhi-Peng (郑志鹏) The equivalence between B-W and K-G band R-S equations 2003 Chinese Physics 12 25

[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[3] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[4] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[5] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[6] Bursting oscillations in a hydro-turbine governing system with two time scales
Qing-Shuang Han(韩青爽), Di-Yi Chen(陈帝伊), Hao Zhang(张浩). Chin. Phys. B, 2017, 26(12): 128202.
[7] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[8] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[9] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[10] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[11] Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
F M Abbasi, M Mustafa, S A Shehzad, M S Alhuthali, T Hayat. Chin. Phys. B, 2016, 25(1): 014701.
[12] Unstable and exact periodic solutions of three-particles time-dependent FPU chains
Liu Qi-Huai (刘期怀), Xing Ming-Yan (邢明燕), Li Xin-Xiang (李新祥), Wang Chao (王超). Chin. Phys. B, 2015, 24(12): 120401.
[13] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[14] Augmented Lyapunov approach to H state estimation of static neural networks with discrete and distributed time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(5): 050201.
[15] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
No Suggested Reading articles found!