Please wait a minute...
Chinese Physics, 2002, Vol. 11(9): 932-939    DOI: 10.1088/1009-1963/11/9/315
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Movement dynamics analysis for an optical pickup head lens actuator in a digital versatile disc system

Huang Lei (黄磊), Gong Ma-Li (巩马理), Jia Wei-Pu (贾维溥), Yan Ping (闫平), Cui Rui-Zhen (崔瑞祯), Zhang Hai-Tao (张海涛)
Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  With the rapid development of CD/DVD (compact disc/digital versatile disc) technology, the disc rotation speed and the information density have increased greatly to fulfil the demand of high information bit rate transfer. As one of the most important elements in a DVD pickup head, objective lens actuators are required to provide a more precise means to accurately follow the disc deviation. The design of the lens actuator becomes all the more important and critical. In order to give complete suggestion to the design of the lens actuator, we put forward the movement differential equations as a new theoretical means to analyse the characteristics of the lens actuator reliably and rigorously. Based on the theoretical analyses, many important and effective methods are proposed. A typical experiment verifies that the performance of our lens actuator head, which adopts these methods, can satisfy the high speed and high density requirement of DVD systems.
Keywords:  optical storage      DVD      lens actuator      focusing  
Received:  26 March 2002      Revised:  24 April 2002      Accepted manuscript online: 
PACS:  42.79.Vb (Optical storage systems, optical disks)  
  42.79.Bh (Lenses, prisms and mirrors)  
  02.30.Hq (Ordinary differential equations)  

Cite this article: 

Huang Lei (黄磊), Gong Ma-Li (巩马理), Jia Wei-Pu (贾维溥), Yan Ping (闫平), Cui Rui-Zhen (崔瑞祯), Zhang Hai-Tao (张海涛) Movement dynamics analysis for an optical pickup head lens actuator in a digital versatile disc system 2002 Chinese Physics 11 932

[1] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[2] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[3] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[4] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[5] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[6] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[7] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[8] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[9] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[10] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[11] Far-field vector-diffraction of off-axis parabolic mirror under oblique incidence
Xia-Hui Zeng(曾夏辉), Xi-Yao Chen(陈曦曜). Chin. Phys. B, 2020, 29(3): 034202.
[12] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[13] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[14] Thermoacoustic-reflected focusing lens based on acoustic Bessel-like beam with phase manipulation
An-Ru Hou(侯安茹), Wen-Ting Gao(高文婷), Jiao Qian(钱姣), Hong-Xiang Sun(孙宏祥), Yong Ge(葛勇), Shou-Qi Yuan(袁寿其), Qiao-Rui Si(司乔瑞), Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2018, 27(12): 124301.
[15] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
No Suggested Reading articles found!