Please wait a minute...
Chinese Physics, 2002, Vol. 11(4): 366-374    DOI: 10.1088/1009-1963/11/4/310
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method

Guo Zhao-Li (郭照立)a, Zheng Chu-Guang (郑楚光)a, Shi Bao-Chang (施保昌)b
a National Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China; b Department of Mathematics, Huazhong University of Science and Shenyang 110023, China
Abstract  In this paper, we propose a new approach to implementing boundary conditions in the lattice Boltzmann method (LBM). The basic idea is to decompose the distribution function at the boundary node into its equilibrium and non-equilibrium parts, and then to approximate the non-equilibrium part with a first-order extrapolation of the non-equilibrium part of the distribution at the neighbouring fluid node. Schemes for velocity and pressure boundary conditions are constructed based on this method. The resulting schemes are of second-order accuracy. Numerical tests show that the numerical solutions of the LBM together with the present boundary schemes are in excellent agreement with the analytical solutions. Second-order convergence is also verified from the results. It is also found that the numerical stability of the present schemes is much better than that of the original extrapolation schemes proposed by Chen et al. (1996 Phys. Fluids 8 2527).
Keywords:  Lattice Boltzmann method      Boundary conditions  
Received:  01 September 2001      Revised:  12 October 2001      Accepted manuscript online: 
PACS:  47.10.-g (General theory in fluid dynamics)  
  05.50.+q (Lattice theory and statistics)  
  02.60.Ed (Interpolation; curve fitting)  
Fund: Project supported by the Special Funds for Major State Basic Research Programmes (Grant No G1999022207) and by the National Natural Science Foundation of China (Grant No 6073044).

Cite this article: 

Guo Zhao-Li (郭照立), Zheng Chu-Guang (郑楚光), Shi Bao-Chang (施保昌) Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method 2002 Chinese Physics 11 366

[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[6] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[7] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[8] Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions
Yang Shi(师阳), Ni Li(李妮), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(10): 107503.
[9] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[10] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[11] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[12] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[13] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[14] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[15] Localization of quantum walks on finite graphs
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形). Chin. Phys. B, 2016, 25(12): 120303.
No Suggested Reading articles found!