Please wait a minute...
Chinese Physics, 2002, Vol. 11(2): 120-125    DOI: 10.1088/1009-1963/11/2/304
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The fine structure splitting of the level of lithium in Rydberg states

Hu Xian-Quan (胡先权)a, Hu Wen-Jiang (胡文江)b,  Kong Chun-Yang (孔春阳)a
a Department of Physics, Chongqing Normal University, Chongqing 400047, China; b Department of Electronic Information Engineering,Chongqing University of Post and Telecommunications, Chongqing 400065, China
Abstract  The Hamiltonian of the four-body problem for a lithium atom is expanded in series. The level shift and level formula of a lithium atom in Rydberg states are achieved by means of the calculation of polarization of the atomic core (including the contribution of dipole, quadrupole and octupole components). We also consider the effect of relativity theory, the orbital angular momentum L and the spin angular momentum S coupling scheme (LS coupling) and high-order correction of the effective potential to the level shift. The fine structure splitting (N=5-12, L=4-9, J=L±1/2) and level intervals in Rydberg states have been calculated by the above-mentioned formula and compared with recent experimental data.
Keywords:  energy levels in Rydberg states      polarization of atomic core      level interval      fine structure  
Received:  16 July 2001      Revised:  11 October 2001      Accepted manuscript online: 
PACS:  32.10.Fn (Fine and hyperfine structure)  
  31.30.Jv  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Project supported by the Natural Science Foundation of Chongqing Education Committee of China (Grant No. 990213) and by the Basic Research of Application of Chongqing Science and Technology Committee, China (Grant No. 199966).

Cite this article: 

Hu Xian-Quan (胡先权), Hu Wen-Jiang (胡文江), Kong Chun-Yang (孔春阳) The fine structure splitting of the level of lithium in Rydberg states 2002 Chinese Physics 11 120

[1] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[2] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[3] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[4] Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛). Chin. Phys. B, 2019, 28(5): 056103.
[5] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[6] Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling
Qing-Hui Wang(王庆辉), Xu-Ping Shao(邵旭萍), Xiao-Hua Yang(杨晓华). Chin. Phys. B, 2016, 25(1): 013301.
[7] Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing
Yan Cheng(程岩), Wen-Xian Li(李文献), Wei-Chang Hao(郝维昌), Huai-Zhe Xu(许怀哲), Zhong-Fei Xu(徐忠菲), Li-Rong Zheng(郑离荣), Jing Zhang(张静),Shi-Xue Dou(窦士学), Tian-Min Wang(王天民). Chin. Phys. B, 2016, 25(1): 017301.
[8] Structure and chemical valence study of Srn+1RunO3n+1 (n=1, 2, ∞) series
Zheng Long (郑龙), Zhu Xiao-Qin (朱小芹), Sui Yong-Xing (眭永兴), Xue Jian-Zhong (薛建忠), Liu Bo (刘波), Pei Ming-Xu (裴明旭). Chin. Phys. B, 2015, 24(5): 056101.
[9] Precision calculation of fine structure in helium and Li+
Zhang Pei-Pei (张佩佩), Zhong Zhen-Xiang (钟振祥), Yan Zong-Chao (严宗朝), Shi Ting-Yun (史庭云). Chin. Phys. B, 2015, 24(3): 033101.
[10] Spectrally selective optical pumping in Doppler-broadened cesium atoms
Zhang Jun-Hai (张军海), Zeng Xian-Jin (曾宪金), Li Qing-Meng (李庆萌), Huang Qiang (黄强), Sun Wei-Min (孙伟民). Chin. Phys. B, 2013, 22(5): 053202.
[11] The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals
Cheng Yan (程岩), Hao Wei-Chang (郝维昌), Li Wen-Xian (李文献), Xu Huai-Zhe (许怀哲), Chen Rui (陈蕊), Dou Shi-Xue (窦士学). Chin. Phys. B, 2013, 22(10): 107501.
[12] A theoretical study of the oxygen K-edge near-edge X-ray absorption ne structure of N2O/Ir(110)
Wu Tai-Quan(吴太权), Zhu Ping(朱萍), Wang Xin-Yan(王新燕), and Luo Hong-Lei (罗宏雷) . Chin. Phys. B, 2012, 21(7): 076801.
[13] Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films
Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang (徐明祥), and Zhang Feng-Ming(张凤鸣). Chin. Phys. B, 2010, 19(5): 056101.
[14] Transition energy and dipole oscillator strength for 1s22p-1s2nd of Cr2l+ ion
Wang Zhi-Wen(王治文), Liu Ying(刘影), Hu Mu-Hong(胡木宏), Li Xin-Ru(李新汝), and Wang Ya-Nan(王亚男). Chin. Phys. B, 2008, 17(8): 2909-2913.
[15] Determination of the sites of Fe atoms in Fe-substituted Mn12
Cao Hui-Bo(曹慧波), Chen Dong-Liang(陈栋梁), He Lun-Hua(何伦华), Zhang Jun-Rong(张俊荣), Wang Fang-Wei(王芳卫), Wu Zi-Yu(吴自玉), and Yan Qi-Wei(严启伟). Chin. Phys. B, 2007, 16(3): 784-787.
No Suggested Reading articles found!