Please wait a minute...
Chinese Physics, 2000, Vol. 9(5): 375-378    DOI: 10.1088/1009-1963/9/5/011
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

THE RAMAN SCATTERING OF CARBON NANOTUBES PRODUCED IN DIFFERENT INERT GASES AND THEIR PRESSURES BY ARC DISCHARGE

Zhang Hai-yan (张海燕)ab, Chen Jian (陈建)c, Liu Song-hao (刘颂豪)b, Chen Di-hu (陈第虎)c, Wu Chun-yan (伍春燕)a, He Yan-yang (何艳阳)a, Liang Li-zheng (梁礼正)a, Peng Shao-qi (彭少麒)c
a Department of Mathematics and Physics, Guangdong University of Technology, Guangzhou 510090, China;  b Institute of Quantum Electronics, South China Normal University, Guangzhou 510631, China;  c Department of Physics, Zhongshan University, Guangzhou 510275, China
Abstract  First- and second-order Raman spectra of carbon nanotubes produced in helium and argon atmospheres at a pressure ranging from 11 to 92 kPa by arc discharge have been measured and compared with each other. The position and bandwidth of the spectral lines depend on the kind of inert gases and their pressure. The Raman spectra of the nanotubes produced in argon gas atmosphere are much more similar to that of polycrystalline graphite than those of the nanotubes produced in helium gas atmosphere. The position and bandwidth of nanotube Raman peaks change with gas pressure in arc discharge because different diameter distribution of nanotubes is produced at different inert gas pressure. The Raman spectra of nanotubes produced at high pressure is much more like that of graphite than those produced in lower pressure
Received:  04 September 1999      Accepted manuscript online: 
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  78.30.Na (Fullerenes and related materials)  
  78.67.Ch (Nanotubes)  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 960097 and 980419) and the Guangdong Provincial Postdoctoral Foundation.

Cite this article: 

Zhang Hai-yan (张海燕), Chen Jian (陈建), Liu Song-hao (刘颂豪), Chen Di-hu (陈第虎), Wu Chun-yan (伍春燕), He Yan-yang (何艳阳), Liang Li-zheng (梁礼正), Peng Shao-qi (彭少麒) THE RAMAN SCATTERING OF CARBON NANOTUBES PRODUCED IN DIFFERENT INERT GASES AND THEIR PRESSURES BY ARC DISCHARGE 2000 Chinese Physics 9 375

[1] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[2] Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东). Chin. Phys. B, 2020, 29(12): 125201.
[3] Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter
Bang-Huang Cai(蔡帮煌), Hui-Min Song(宋慧敏), Min Jia(贾敏), Yun Wu(吴云), Wei Cui(崔巍), Sheng-Fang Huang(黄胜方). Chin. Phys. B, 2020, 29(6): 065207.
[4] Characteristics of non-thermal AC arcs in multi-arc generator
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xinyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), Yuedong Meng(孟月东). Chin. Phys. B, 2019, 28(12): 125205.
[5] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
[6] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
[7] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[8] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[9] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[10] Influence of air pressure on the performance of plasma synthetic jet actuator
Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华). Chin. Phys. B, 2016, 25(9): 095205.
[11] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[12] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[13] Evolution of magnetically rotating arc into large area arc plasma
Wang Cheng (王城), Li Wan-Wan (李皖皖), Zhang Xiao-Ning (张晓宁), Zha Jun (査俊), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(6): 065206.
[14] Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation
Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军). Chin. Phys. B, 2014, 23(7): 075210.
[15] Investigation on the shockwave induced by surface arc plasma in quiescent air
Jin Di (金迪), Li Ying-Hong (李应红), Jia Min (贾敏), Li Fan-Yu (李凡玉), Cui Wei (崔巍), Sun Quan (孙权), Zhang Bai-Ling (张百灵), Li Jun (李军). Chin. Phys. B, 2014, 23(3): 035201.
No Suggested Reading articles found!