Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010601    DOI: 10.1088/1674-1056/ae1efe
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Phasemeter based on second harmonic signal filter for space-based gravitational wave detection

Zheng Fan(范正)1, Zhu Li(李祝)1,†, Xiangqing Huang(黄祥青)1, Yurong Liang(梁浴榕)2, Yu Song(宋煜)1, Maomao Fan(范毛毛)1, Huizong Duan(段会宗)1, Siyuan Peng(彭思远)1, Shanqing Yang(杨山清)1, and Liangcheng Tu(涂良成)1
1 MOE Key Laboratory of Tianqin Mission, Frontiers Science Center for Tianqin, CNSA Research Center for Gravitational Waves, Tianqin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China;
2 Center for Gravitational Experiment, MOE Key Laboratory of Fundamental Physical Quantities Measurements, The School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The space gravitational wave detection aims to detect gravitational waves in the mHz band in order to study supermassive black hole mergers, galaxy evolution and the structure of the early universe. One of its core payloads is a transponder-type interstellar laser interferometer, designed to measure relative displacement changes at the pico-meter level. Among its components, phasemeter is tasked with extracting the phase and frequency of the interference signal. Currently, phase-locked loop (PLL) phasemeters are commonly employed. However, the second harmonic signal generated by the mixer can restrict both the dynamic range and phase measurement accuracy of the phasemeter. This paper analyzes the interstellar laser interferometer and the impact of the second harmonic signal on the phasemeter’s performance. To address these challenges, a phasemeter incorporating a second harmonic signal filter is proposed. This new design mitigates second harmonic disturbances within the phasemeter’s bandwidth by dynamically adjusting the filter’s cutoff frequency to track the input signal frequency, thereby suppressing the second harmonic signal in real time. Theoretical and simulation analyses demonstrate that the proposed phasemeter with a second harmonic filter significantly enhances the dynamic range. Finally, experimental results verify that the phasemeter can achieve the tracking of sudden frequency changes up to 4.8 MHz.
Keywords:  laser interferometer      phasemeter      second harmonic signal      dynamic range  
Received:  06 August 2025      Revised:  30 September 2025      Accepted manuscript online:  13 November 2025
PACS:  06.30.Ft (Time and frequency)  
  04.80.Nn (Gravitational wave detectors and experiments)  
  07.60.Ly (Interferometers)  
Fund: The authors thank the National Key Research & Development Program of China (Grant No. 2022YFC2203901), the State Key Laboratory of Spatial Datum (Grant No. SKLSD2025-KF-03), Fundamental Research Funds for the Central Universities, and Sun Yat-sen University for the support.
Corresponding Authors:  Zhu Li     E-mail:  lizhu@mail.sysu.edu.cn

Cite this article: 

Zheng Fan(范正), Zhu Li(李祝), Xiangqing Huang(黄祥青), Yurong Liang(梁浴榕), Yu Song(宋煜), Maomao Fan(范毛毛), Huizong Duan(段会宗), Siyuan Peng(彭思远), Shanqing Yang(杨山清), and Liangcheng Tu(涂良成) Phasemeter based on second harmonic signal filter for space-based gravitational wave detection 2026 Chin. Phys. B 35 010601

[1] Gong Y, Luo J and Wang B 2021 Nat. Astron. 5 881
[2] Cai R G, Cao Z, Guo Z K, Wang S J and Yang T 2017 Natl. Sci. Rev. 4 687
[3] Huang S J, Hu Y M, Korol V, Li P C, Liang Z C, Lu Y, Wang H T, Yu S and Mei J 2020 Phys. Rev. D 102 063021
[4] Liu S, Hu Y M, Zhang J and Mei J 2020 Phys. Rev. D 101 103027
[5] Feng W F, Wang H T, Hu X C, Hu Y M and Wang Y 2019 Phys. Rev. D 99 123002
[6] Bao J, Shi C, Wang H, Zhang J, Hu Y, Mei J and Luo J 2019 Phys. Rev. D 100 084024
[7] Wang H T, Jiang Z, Sesana A, Enrico Barausse, Huang S J, Wang Y, Feng W F, Wang Y, Hu Y, Mei J and Luo J 2019 Phys. Rev. D 100 043003
[8] Danzmann K and team the L study 1996 Class. Quantum Grav. 13 A247
[9] Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y, Wang Y, Yeh H C, Zhan M S, Zhang Y, Zharov V and Zhou Z B 2016 Class. Quantum Grav. 33 035010
[10] Kawamura S, Hiroo Kunimori, Hosokawa M, Fujita R, Maeda K, H. Shinkai, Tanaka T, Wakabayashi Y, Ishihara H, Nishiyama K, Ueda K, Kaiki Taro Inoue, Yamamoto K, Kunihito Ioka, Hong F, Y. Tsunesada, Numata K, Shibata M, Hitoshi Kuninaka and Hayama K 2011 Class. Quantum Grav. 28 094011
[11] Hu W R and Wu Y L 2017 Natl. Sci. Rev. 4 685
[12] Ming M, Luo Y, Liang Y R, Zhang J Y, Duan H Z, Yan H, Jiang Y Z, Lu L F, Xiao Q, Zhou Z and Yeh H C 2020 Int. J. Extrem. Manuf. 2 022003
[13] Mei J, Bai Y Z, Bao J, Barausse E, Cai L, Canuto E, Cao B, Chen W M, Chen Y, Ding Y W, Duan H Z, Fan H, Feng W F, Fu H, Gao Q, Gao T, Gong Y, Gou X, Gu C Z and Gu D F 2020 Prog. Theor. Exper. Physics 5 059201
[14] Wand V, GuzmaanF, Heinzel G and Karsten Danzmann 2006 AIP Conf. Proc. 873 689
[15] Bykov I, Jose J, Francisco A, Heinzel G and Karsten Danzmann 2009 J. Phys.: Conf. Ser. 154 012017
[16] Gerberding O, Sheard B, Bykov I, Kullmann J, Jose J K 2013 Class. Quantum Grav. 30 235029
[17] Liang Y R, Duan H Z, Xiao X L, Wei B B and Yeh H C 2015 Rev. Sci. Instrum. 86 016106
[18] Liang Y R 2018 Rev. Sci. Instrum. 89 036106
[19] Jiang Y Z, Jin X L, Yeh H C and Liang Y R 2021 Opt. Express 29 18336
[20] Yang R, Liu H and Luo Z 2024 IEEE Trans. Instrum. Meas. 73 7006508
[21] Huang X, Wang G, Yang M, Yang Z, Cai C, Ming M, Zhang J, Yang S, Tu L, Duan H, Li Z and Yeh H 2023 Opt. Laser Technol. 161 109185
[22] Zheng L, Yang S and Zhang X 2023 Phys. Rev. D 108 022001
[23] Zhou M Y, Hu X C, Ye B, Hu S, Zhu D D, Zhang X, Su W and Wang Y 2021 Phys. Rev. D 103 103026
[24] Liang Y R, Duan H Z, Yeh H C and Luo J 2012 Rev. Sci. Instrum. 83 095110
[25] Liang Y R, Feng Y J, Xiao G Y, Jiang Y Z, Li L and Jin X L 2021 Rev. Sci. Instrum. 92 124501
[26] Wang D, Zhang X and Duan H 2024 Class. Quantum Grav. 41 117003
[27] Fang Y, Zhang X, Fu F and Li H 2024 Phys. Rev. D 109 062001
[28] Wei C Q, Liu J B, Dong Y F, Sun Y N, Zhou Y, Zheng H B, Liu Y Y, Yan X S, Li F L and Xu Z 2024 Chin. Phys. B 33 034203
[29] Wu J, Li J and Jiang Q 2023 Chin. Phys. B 32 090401
[30] Zhang J D and Wang S 2022 Chin. Phys. B 32 010306
[31] Zhang Z G, Dong F L, Cheng T, Qian K M, Qiu K, Zhang Q C, Chu W G and Wu X P 2014 Chin. Phys. Lett. 31 114208
[32] Feng Y J, Jiang Y Z, Xiao G Y, Chen L Y, Lu B F, Xu Z L and Liang Y R 2024 Rev. Sci. Instrum. 95 104503
[1] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[2] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
[3] Recent research process on perovskite photodetectors:A review for photodetector – materials, physics, and applications
Yan Zhao(赵岩), Chenglong Li(李成龙), Liang Shen(沈亮). Chin. Phys. B, 2018, 27(12): 127806.
[4] Over exposed image information recovery via stochastic resonance
Yang Yi-Bing(杨异秉), Tao Wei-Ming(陶伟明), Huang Jia-Min(黄家闽), and Xu Bo-Hou(徐博侯) . Chin. Phys. B, 2012, 21(4): 044204.
No Suggested Reading articles found!