Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 126401    DOI: 10.1088/1674-1056/ae07ae
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Activity waves in binary active colloids of Quincke rollers

Yuan Xie(谢圆), Xiao-Yi Zhou(周晓怡), Qi-Ying Ni(倪琦英), Wen-De Tian(田文得), Kang Chen(陈康)§, and Tian-Hui Zhang(张天辉)
Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Abstract  Activity waves are popular in excitable systems. Here, we show that binary active colloids of Quincke rollers driven by an alternating electric field can also form activity waves. In the activity waves, Quincke rollers exhibit a memory of the direction of motion. This memory occurs at frequencies much smaller than that in monodisperse systems. It is found that the enhanced memory arises from the paired distinct rollers which break the dynamic symmetry because of the configuration-dependent dipole-dipole interactions. This finding demonstrates that dipole-dipole interactions between distinct active agents can significantly modify the collective dynamics of polydisperse active systems.
Keywords:  polydisperse active systems      activity waves      dipole-dipole interactions  
Received:  27 April 2025      Revised:  10 June 2025      Accepted manuscript online:  17 September 2025
PACS:  64.60.-i (General studies of phase transitions)  
  05.65.+b (Self-organized systems)  
  87.18.Gh (Cell-cell communication; collective behavior of motile cells)  
  82.70.Dd (Colloids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974255).
Corresponding Authors:  Wen-De Tian, Kang Chen, Tian-Hui Zhang     E-mail:  tianwende@suda.edu.cn;kangchen@suda.edu.cn;hangtianhui@suda.edu.cn

Cite this article: 

Yuan Xie(谢圆), Xiao-Yi Zhou(周晓怡), Qi-Ying Ni(倪琦英), Wen-De Tian(田文得), Kang Chen(陈康), and Tian-Hui Zhang(张天辉) Activity waves in binary active colloids of Quincke rollers 2025 Chin. Phys. B 34 126401

[1] Keener J P 1980 SIAM J. Appl. Math. 39 528
[2] Meron E 1992 Phys. Rep. 218 1
[3] Zykov V S 2018 Philos. T. R. Soc. A 376 20170379
[4] Cassani A, Monteverde A and Piumetti M 2021 J. Math. Chem. 59 792
[5] Malomed B A and Mihalache D 2019 Rom. J. Phys. 64 106
[6] Deneke V E and Di Talia S 2018 J. Cell Biol. 217 1193
[7] Inagaki N and Katsuno H 2017 Trends Cell Biol. 27 515
[8] Driscoll M K, McCann C, Kopace R, et al. 2012 PLoS Comput. Biol. 8 e1002392
[9] Allard J and Mogilner A 2013 Curr. Opin. Cell Biol. 25 107
[10] Drukarch B Wilhelmus M M and Shrivastava S 2022 Rev. Neurosci. 33 285
[11] Bouchard R A, Clark R B and Giles W R 1995 Circ. Res. 76 790
[12] Beeler G W and Reuter H 1977 J. Physiol. 268 177
[13] Bean B P 2007 Nat. Rev. Neurosci. 8 451
[14] Wartlick O, Julicher F and Gonzalez-Gaitan M 2014 Development 141 1884
[15] Harrison L G, Snell J, Verdi R, et al. 1981 Protoplasma 106 211
[16] Christian J L 2012 WIREs Dev. Biol. 1 3
[17] Bressloff P C 2022 Phys. Biol. 19 066005
[18] Sneyd J, Keizer J and Sanderson M J 1995 FASEB J. 9 1463
[19] Ross W N 2012 Nat. Rev. Neurosc. 13 157
[20] Parkash J and Asotra K 2010 Life Sci. 87 587
[21] Jaffe L 1993 Cell Calcium 14 736
[22] Zhang T H, Groenewold J and Kegel W K 2009 Phys. Chem. Chem. Phys. 11 10827
[23] Zhang T H and Liu X Y 2014 Chem. Soc. Rev. 43 2324
[24] Chen X, Xu Y, Zhou C, et al. 2022 Sci. Adv. 8 eabn9130
[25] Liu Z T, Shi Y, Zhao Y, et al. 2021 Proc. Natl. Acad. Sci. USA 118 e2104724118
[26] Yang Y, Zhang M F, Zhu L, et al. 2023 Chin. Phys. Lett. 40 126401
[27] Adhikary S and Santra S 2022 Phys. Rev. E 105 064612
[28] Kolb T and Klotsa D 2020 Soft Matter 16 1967
[29] Pattanayak S, Singh J P, Kumar M, et al. 2020 Phys. Rev. E 101 052602
[30] Kumari S, Nunes A S, Araujo N A, et al. 2017 J. Chem. Phys. 147 174702
[31] Maity S and Morin A 2023 Phys. Rev. Lett. 131 178304
[32] Bricard A, Caussin J B, Desreumaux N, et al. 2013 Nature 503 95
[33] Das D and Saintillan D 2013 Phys. Rev. E 87 043014
[34] Yang Y, Zhang Z C, Qi F, et al. 2022 arXiv: 2204.07717
[35] Karani H, Pradillo G E and Vlahovska P M 2019 Phys. Rev. Lett. 123 208002
[36] Jones T B A 1984 IEEE Trans. Ind. Appl. IA-20 845
[37] Zhang M F, Fan B Y, Zhang C Y, et al. 2025 Soft Matter 21 927
[1] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
No Suggested Reading articles found!