Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 128703    DOI: 10.1088/1674-1056/ade424
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tumor cell directed migration based on 3D printed microfilament structure

Dongtian Zheng(郑栋天)1, Zhikai Ye(叶志凯)2, Chuyun Wang(汪楚云)4, Lianjie Zhou(周连杰)1, Xiyao Yao(姚喜耀)1, Guoqiang Li(李国强)3, Guo Chen(陈果)1,†, and Liyu Liu(刘雳宇)1,‡
1 Chongqing Key Laboratory of Interface Physics in Energy Conversion, School of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China;
2 Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
3 College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China;
4 Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, China
Abstract  Three-dimensional (3D) cell spheroids, generated utilizing the self-organizing properties of mammalian cells, exhibit significant advantages and hold important value in simulating tissue complexity. However, they still encounter numerous limitations, including the absence of spatial anisotropy in cell spheroids, which can compromise their reliability in numerous preclinical drug tests. This study utilizes two-photon polymerization (TPP) 3D printing technology, drawing inspiration from common liquid transport structures in nature, to design a microstructure featuring periodic parallel microcavities and wedge angles. This design enables unilateral immobilization and capillary rise of soft condensed matter. This structure facilitates the directed migration of 3D cell spheroids through the physical properties of the structure itself in static culture. Consequently, the original 3D cultured cell spheroids can acquire unique anisotropy within the spatial structure in a static culture environment, presenting a novel perspective for constructing biological constructs and cultivating connections between various cell spheroids, such as organoids.
Keywords:  cell migration      laplace pressure      corner effect      TPP 3D printing  
Received:  28 March 2025      Revised:  03 June 2025      Accepted manuscript online:  13 June 2025
PACS:  87.80.Ek (Mechanical and micromechanical techniques)  
  68.03.Cd (Surface tension and related phenomena)  
  47.55.dr (Interactions with surfaces)  
  87.85.Va (Micromachining)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. T2350007 and 12174041), the Natural Science Foundation of Chongqing (Grant No. CSTB2024NSCQ-MSX0596), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202401306), and the Scientific Research Fund of Chongqing University of Arts and Sciences (Grant Nos. R2023HH03 and P2022HH05).
Corresponding Authors:  Guo Chen, Liyu Liu     E-mail:  wezer@cqu.edu.cn;lyliu@cqu.edu.cn

Cite this article: 

Dongtian Zheng(郑栋天), Zhikai Ye(叶志凯), Chuyun Wang(汪楚云), Lianjie Zhou(周连杰), Xiyao Yao(姚喜耀), Guoqiang Li(李国强), Guo Chen(陈果), and Liyu Liu(刘雳宇) Tumor cell directed migration based on 3D printed microfilament structure 2025 Chin. Phys. B 34 128703

[1] Sowah M N, Klein B R, Lu V M, Komotar R J and Levi A D 2025 Neurosurg. Rev. 48 294
[2] Dmour I 2025 J. Pharm. Innov. 20 44
[3] Qader M A, Hosseini L, Abolhasanpour N, Oghbaei F, Maghsoumi- Norouzabad L, Salehi-Pourmehr H, Fattahi F and Sadeh R N 2025 BMC Neurosci. 26 17
[4] Lee S Y, Koo I S, Hwang H J and Lee D W 2023 SLAS Discov. 28 119
[5] Patel T and Jain N 2024 Life Sciences 358 123184
[6] Yao J, Li G, Yao X, Zhou L, Ye Z, Liu Y, Zheng D, Tang T, Song K, Chen G and Liu L 2024 Chin. Phys. B 33 058706
[7] Brancato V, Oliveira J M, Correlo V M, Reis R L and Kundu S C 2020 Biomaterials 232 119744
[8] Clevers H 2016 Cell 165 1586
[9] LancasterMA, Renner M, Martin C A, Wenzel D, Bicknell L S, Hurles M E, Homfray T, Penninger J M, Jackson A P and Knoblich J A 2013 Nature 501 373
[10] Pasca S P 2018 Nature 553 437
[11] Baptista L S, Mironov V, Koudan E, Amorim E A, Pampolha T P, Kasyanov V, Kovalev A, Senatov F and Granjeiro J M 2024 Tissue Eng. Part A 30 377
[12] Lancaster M A, Corsini N S, Wolfinger S, Gustafson E H, Phillips A W, Burkard T R, Otani T, Livesey F J and Knoblich J A 2017 Nat. Biotechnol. 35 659
[13] Ritzau-Reid K I, Callens S J P, Xie R, Cihova M, Reumann D, Grigsby C L, Prados-Martin L, Wang R, Moore A C, Armstrong J P K, Knoblich J A and Stevens M M 2023 Adv. Mater. 35 2300305
[14] Kačarević ZP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, Ivanišević Z and Barbeck M 2018 Materials (Basel) 11 2199
[15] Xu H Q, Liu J C, Zhang Z Y and Xu C X 2022 Military Medical Research 9 70
[16] Engwer C and Wenske M 2021 J. Math. Biol. 82 10
[17] Betz T 2021 Viscoelasticity and Collective Cell Migration (London, San Diego, CA: Elsevier) pp. 135–155
[18] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J and Jiang L 2010 Nature 463 640
[19] Ju J, Bai H, Zheng Y, Zhao T, Fang R and Jiang L 2012 Nat. Commun. 3 1247
[20] Nørgaard T and Dacke M 2010 Front. Zool. 7 23
[21] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L and Zhu D 2002 Adv. Mater. 14 1857
[22] Han F, Gu S, Klimas A, Zhao N, Zhao Y and Chen S C 2022 Science 378 1325
[23] Zhu W, Ma X, Gou M, Mei D, Zhang K and Chen S 2016 Current Opinion in Biotechnology 40 103
[24] Renvoisé P, Bush JWM, PrakashMand Quéré D 2009 Europhys. Lett. 86 64003
[25] Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z and Jiang L 2016 Nature 532 85
[26] Oliver J F, Huh C and Mason S G 1977 Journal of Colloid and Interface Science 59 568
[27] Li J and Guo Z 2018 Nanoscale 10 13814
[1] Estimation of cancer cell migration in biomimetic random/oriented collagen fiber microenvironments
Jingru Yao(姚静如), Guoqiang Li(李国强), Xiyao Yao(姚喜耀), Lianjie Zhou(周连杰), Zhikai Ye(叶志凯), Yanping Liu(刘艳平), Dongtian Zheng(郑栋天), Ting Tang(唐婷), Kena Song(宋克纳), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2024, 33(5): 058706.
[2] Spatial search weighting information contained in cell velocity distribution
Yikai Ma(马一凯), Na Li(李娜), and Wei Chen(陈唯). Chin. Phys. B, 2024, 33(2): 028703.
[3] Characteristics of cell motility during cell collision
Yikai Ma(马一凯), Na Li(李娜), and Wei Chen(陈唯). Chin. Phys. B, 2024, 33(2): 028702.
[4] Directional-to-random transition of cell cluster migration
Yang Zeng(曾阳), Bingchen Che(车丙晨), Dan Sun(孙聃), Ce Zhang(张策), and Guangyin Jing(经光银). Chin. Phys. B, 2023, 32(11): 118705.
[5] Nonlinear dynamics of cell migration in anisotropic microenvironment
Yanping Liu(刘艳平), Da He(何达), Yang Jiao(焦阳), Guoqiang Li(李国强), Yu Zheng(郑钰), Qihui Fan(樊琪慧), Gao Wang(王高), Jingru Yao(姚静如), Guo Chen(陈果), Silong Lou(娄四龙), and Liyu Liu(刘雳宇). Chin. Phys. B, 2021, 30(9): 090505.
[6] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[7] Effect of elasticity mismatch on cell deformation and migration: A phase-field study
Yuanfeng Yin(尹元枫), Hui Xing(邢辉), Duyang Zang(臧渡洋), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 116201.
[8] Derivation of persistent time for anisotropic migration of cells
Yan-Ping Liu(刘艳平), Xiao-Cui Zhang(张晓翠), Yu-Ling Wu(吴宇宁), Wen Liu(刘雯), Xiang Li(李翔), Ru-Chuan Liu(刘如川), Li-Yu Liu(刘雳宇), Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2017, 26(12): 128707.
[9] Corner effects in double-gate/gate-all-around MOSFETs
Hou Xiao-Yu(侯晓宇), Zhou Fa-Long(周发龙), Huang Ru(黄如), and Zhang Xing(张兴). Chin. Phys. B, 2007, 16(3): 812-816.
[10] Analytical analysis of surface potential for grooved-gate MOSFET
Zhang Xiao-Ju (张晓菊), Gong Xin (龚欣), Wang Jun-Ping (王俊平), Hao Yue (郝跃). Chin. Phys. B, 2006, 15(3): 631-635.
No Suggested Reading articles found!