Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128707    DOI: 10.1088/1674-1056/26/12/128707
Special Issue: SPECIAL TOPIC — Soft matter and biological physics
SPECIAL TOPIC—Soft matter and biological physics Prev   Next  

Derivation of persistent time for anisotropic migration of cells

Yan-Ping Liu(刘艳平)1, Xiao-Cui Zhang(张晓翠)1, Yu-Ling Wu(吴宇宁)1, Wen Liu(刘雯)1, Xiang Li(李翔)1,2, Ru-Chuan Liu(刘如川)3, Li-Yu Liu(刘雳宇)3, Jian-Wei Shuai(帅建伟)1,2,4
1. Department of Physics, Xiamen University, Xiamen 361005, China;
2. State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China;
3. College of Physics, Chongqing University, Chongqing 401331, China;
4. Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361102, China
Abstract  

Cell migration plays an essential role in a wide variety of physiological and pathological processes. In this paper we numerically discuss the properties of an anisotropic persistent random walk (APRW) model, in which two different and independent persistent times are assumed for cell migrations in the x-and y-axis directions. An intrinsic orthogonal coordinates with the primary and non-primary directions can be defined for each migration trajectory based on the singular vector decomposition method. Our simulation results show that the decay time of single exponential distribution of velocity auto-correlation function (VACF) in the primary direction is actually the large persistent time of the APRW model, and the small decay time of double exponential VACF in the non-primary direction equals the small persistent time of the APRW model. Thus, we propose that the two persistent times of anisotropic migration of cells can be properly estimated by discussing the VACFs of trajectory projected to the primary and non-primary directions.

Keywords:  cell migration      random walk      Langevin equation      cancer  
Received:  05 September 2017      Revised:  15 September 2017      Accepted manuscript online: 
PACS:  87.17.Aa (Modeling, computer simulation of cell processes)  
  05.40.Fb (Random walks and Levy flights)  
  87.19.xj (Cancer)  
  05.10.Gg (Stochastic analysis methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 31370830, 11675134, 11474345, and 11604030), the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the 111 Project, China (Grant No. B16029), and the China Postdoctoral Science Foundation (Grant No. 2016M602071).

Corresponding Authors:  Jian-Wei Shuai     E-mail:  jianweishuai@xmu.edu.cn

Cite this article: 

Yan-Ping Liu(刘艳平), Xiao-Cui Zhang(张晓翠), Yu-Ling Wu(吴宇宁), Wen Liu(刘雯), Xiang Li(李翔), Ru-Chuan Liu(刘如川), Li-Yu Liu(刘雳宇), Jian-Wei Shuai(帅建伟) Derivation of persistent time for anisotropic migration of cells 2017 Chin. Phys. B 26 128707

[1] Douglas A Lauffenburger and Alan F Horwitz 1996 Cell 84 359
[2] Anne J Ridley, Martin A Schwartz, Keith Burridge, Richard A Firtel, Mark H Ginsberg, Gary Borisy, Thomas Parsons J and Alan Rick Horwitz 2003 Science 302 1704
[3] Mccann C, Kriebel P, Parent C A and Losert W 2010 J. Cell Sci. 123 1724
[4] Dang I, Gorelik R, Sousablin C, et al. 2013 Nature 5037475
[5] Peter Friedl and Darren Gilmour 2009 Nat. Rev. Mol. Cell Biology 10 445
[6] Berg H C 1983 Physics Today 4073
[7] Uhlenbeck G E and Ornstein L S 1930 Phys. Rev. 36 823
[8] Tajie H Harris, Edward J Banigan, David A Christian, et al. 2012 Nature 486545
[9] András Czirók, Katalin Schlett, Emília Madarász and Tamás Vicsek 1998 Phys. Rev. Lett. 81 3038
[10] Upadhyaya A, Rieu J P, Glazier J A and Sawada Y 2001 Physica A 293 549
[11] Selmeczi D, Mosler S, Hagedorn P H, Larsen N B and Flyvbjerg H 2005 Biophys. J. 89 912
[12] Driscoll M K and Danuser G 2015 Trends in Cell Biology 25 749
[13] Liyu Liu, Guillaume Duclos, Bo Sun, et al. 2013 Proc. Natl. Acad. Sci. USA 1101686
[14] Jiangrui Zhu, Long Liang, Yang Jiao and Liyu Liu 2015 PLOS One 10 e0118058
[15] Wu P, Giri A, Sun S X and Wirtz D 2014 Proc. Natl. Acad. Sci. USA 111 3949
[16] Wu P, Giri A and Wirtz D 2015 Nature Protocols 10 517
[17] Metzler R and Klafter J 2000 Phys. Rep. 3391-77
[18] Mandelbrot B B and Van Ness J W 2006 Siam Review 10422
[19] Stokes C L, Lauffenburger D A and Williams S K 1991 J. Cell Sci. 99419
[20] Campos D, Mendez V and Llopis I 2010 J. Theor. Biology 267 526
[21] Li L, Cox E C and Flyvbjerg H 2011 Physical Biology 8 046006
[22] Höfling F and Franosch T 2013 Rep. Prog. Phys. 76 046602
[23] Zaburdaev V, Denisov S and Klafter J 2015 Rev. Mod. Phys. 87 483
[24] Maiuri P, Rupprecht J, Wieser S, et al. 2015 Cell 161 374
[25] Baumann K 2015 Nat. Rev. Mol. Cell Biology 16267
[1] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[2] Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
Guoqiang Li(李国强), Yanping Liu(刘艳平), Jingru Yao(姚静如), Kena Song(宋克纳), Gao Wang(王高), Lianjie Zhou(周连杰), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2022, 31(2): 028703.
[3] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[4] Nonlinear dynamics of cell migration in anisotropic microenvironment
Yanping Liu(刘艳平), Da He(何达), Yang Jiao(焦阳), Guoqiang Li(李国强), Yu Zheng(郑钰), Qihui Fan(樊琪慧), Gao Wang(王高), Jingru Yao(姚静如), Guo Chen(陈果), Silong Lou(娄四龙), and Liyu Liu(刘雳宇). Chin. Phys. B, 2021, 30(9): 090505.
[5] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[6] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[7] A 3D biophysical model for cancer spheroid cell-enhanced invasion in collagen-oriented fiber microenvironment
Miaomiao Hai(海苗苗), Yanping Liu(刘艳平), Ling Xiong(熊玲), Guoqiang Li(李国强), Gao Wang(王高), Hongfei Zhang(张鸿飞), Jianwei Shuai(帅建伟), Guo Chen(陈果), Liyu Liu(刘雳宇). Chin. Phys. B, 2020, 29(9): 098702.
[8] Influence of matrix-metalloproteinase inhibitor on the interaction between cancer cells and matrigel
Teng Ye(叶腾), Fangfu Ye(叶方富), Feng Qiu(邱峰). Chin. Phys. B, 2020, 29(6): 068701.
[9] Gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging for detection of submucosal gastric cancer: in vitro study
Huaqin Wu(吴华钦), Haiyang Song(宋海洋), Yudian Huang(黄玉钿), Zhifang Li(李志芳), Shulian Wu(吴淑莲), Xiaoman Zhang(章小曼), Hui Li(李晖). Chin. Phys. B, 2020, 29(6): 064205.
[10] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
[11] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[12] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[13] Influence of matrigel on the shape and dynamics of cancer cells
Teng Ye(叶腾), Feng Qiu(邱峰). Chin. Phys. B, 2019, 28(10): 108704.
[14] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[15] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
No Suggested Reading articles found!