| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Non-synchronous strain effects on a hetero-bonded van derWaals material CrSBr |
| Junming Guo(郭俊明)1,†, Wenqiang Shi(时文强)1,†, Kaipeng Ni(倪凯鹏)1, Xing Chen(陈行)1, Daxiang Liu(刘大象)2, Xue Liu(刘学)1, Shouguo Wang(王守国)1, Qian Li(李倩)2,‡, Rui-Chun Xiao(肖瑞春)1,§, and Mengmeng Yang(杨蒙蒙)1,¶ |
1 Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Faculty of Materials Science and Engineering, Anhui University, Hefei 230601, China; 2 National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China |
|
|
|
|
Abstract The van der Waals (vdW) material CrSBr exhibits a distinctive hetero-bonded structure, characterized by fence-like and rectangular configurations viewed from different crystallographic orientations. Mechanical deformation of this unique structure can induce significant anisotropic electronic and optical properties. In this study, we systematically investigate the non-synchronous strain response of CrSBr through theoretical and experimental approaches. Our results reveal that the electronic band structure of CrSBr is predominantly governed by the intralayer Cr-S bonds along the $b$-axis, whereas the characteristic Raman peak A$_{\rm g}^{3}$ arises from interlayer Cr-S bond vibrations in each quasi-monolayer. Notably, the different strain responses of these two types of bonds, stemming from the hetero-bonded architecture, lead to distinct behaviors in photoluminescence (PL) and Raman spectra under uniaxial strain. Specifically, the electronic band structure demonstrates heightened sensitivity to tensile strain along the $b$-axis, while the A$_{\rm g}^{3}$ Raman mode exhibits greater sensitivity to strain along the $a$-axis. These insights advance the understanding of strain-induced anisotropies in CrSBr and provide valuable guidance for the design of vdW-based optoelectronic devices.
|
Received: 21 April 2025
Revised: 13 May 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
| |
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
| |
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52471248, 12174364, 12204009, and 12104003), the Natural Science Foundation of Anhui Province, China (Grant No. 2308085Y04), the National Key Research and Development Program of China (Grant No. 2023YFA1406400), and the Fundamental Research Funds for the Central Universities (Grant No. wk2310000104). |
Corresponding Authors:
Qian Li, Rui-Chun Xiao, Mengmeng Yang
E-mail: liqian89@ustc.edu.cn;xiaoruichun@ahu.edu.cn;mmyangphy@ahu.edu.cn
|
Cite this article:
Junming Guo(郭俊明), Wenqiang Shi(时文强), Kaipeng Ni(倪凯鹏), Xing Chen(陈行), Daxiang Liu(刘大象), Xue Liu(刘学), Shouguo Wang(王守国), Qian Li(李倩), Rui-Chun Xiao(肖瑞春), and Mengmeng Yang(杨蒙蒙) Non-synchronous strain effects on a hetero-bonded van derWaals material CrSBr 2025 Chin. Phys. B 34 104203
|
[1] Park J G 2016 J. Phys.: Condens. Matter 28 301001 [2] Yagmurcukardes M, Bacaksiz C, Unsal E, Akbali B, Senger R T and Sahin H 2018 Phys. Rev. B 97 115427 [3] Du Y, Maassen J, Wu W, Luo Z, Xu X and Ye P D 2016 Nano Lett. 16 6701 [4] Deng Y, Zhang Y, Zhao Y, Xu Y, Dai X,Wang S, Lu X, Li Y, Xu Y and He L 2024 Chin. Phys. Lett. 41 037102 [5] Zhang S, Mao N, Wu J, Tong L, Zhang J and Liu Z 2017 Small 13 1700466 [6] Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y and Zhai T 2019 InfoMat 1 54 [7] Iqbal M W, Shahzad K, Akbar R and Hussain G 2020 Microelectron. Eng. 219 111152 [8] Li Z, Lv Y, Ren L, Li J, Kong L, Zeng Y, Tao Q, Wu R, Ma H, Zhao B, Wang D, Dang W, Chen K, Liao L, Duan X, Duan X and Liu Y 2020 Nat. Commun. 11 1151 [9] Samal R, Sanyal G, Chakraborty B and Rout C S 2021 J. Mater. Chem. A 9 2560 [10] Yu W, Wang Z, Zhao X, Wang J, Herng T S, Ma T, Zhu Z, Ding J, Eda G, Pennycook S J, Feng Y P and Loh K P 2020 Adv. Funct. Mater. 30 2003057 [11] Zhao Y, Du Z, Wang L, Liu M, Yao B, Hu X, Gao L, Wu F, Liu C, Li X, Wan Y and Kan E 2023 ACS Appl. Nano Mater. 6 9679 [12] Telford E J, Dismukes A H, Dudley R L, Wiscons R A, Lee K, Chica D G, Ziebel M E, Han M G, Yu J, Shabani S, Scheie A, Watanabe K, Taniguchi T, Xiao D, Zhu Y, Pasupathy A N, Nuckolls C, Zhu X, Dean C R and Roy X 2022 Nat. Mater. 21 754 [13] Wang Q H, Bedoya-Pinto A, Blei M, Dismukes A H, Hamo A, Jenkins S, Koperski M, Liu Y, Sun Q C, Telford E J, Kim H H, Augustin M, Vool U, Yin J X, Li L H, Falin A, Dean C R, Casanova F, Evans R F L, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen A W, Gerardot B D, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan M Z, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov K S, Dai P, Balicas L, Santos E J G, et al. 2022 ACS Nano 16 6960 [14] Ye C, Wang C, Wu Q, Liu S, Zhou J, Wang G, Söll A, Sofer Z, Yue M, Liu X, Tian M, Xiong Q, Ji W and Renshaw Wang X 2022 ACS Nano 16 11876 [15] Pei F, Yu J, Zhou J, Wang S, Liu D, Yuan Y, Xi L, Jin F, Kan X, Wang C, Wang L, Yan W, Wu Y, Wang S, Chen K, Ma T, Liu X, Yang M and Li Q 2023 Adv. Funct. Mater. 34 2309335 [16] Yu J, Liu D, Ding Z, Yuan Y, Zhou J, Pei F, Pan H, Ma T, Jin F, Wang L, Zhu W, Wang S, Wu Y, Liu X, Hou D, Gao Y, Qiu Z, Yang M and Li Q 2023 Adv. Funct. Mater. 34 2307259 [17] Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J H, Cao T and Xu X 2022 Nat. Nanotechnol. 17 256 [18] Bagani K, Vervelaki A, Jetter D, Devarakonda A, TschudinMA, Gross B, Chica D G, Broadway D A, Dean C R, Roy X, Maletinsky P and Poggio M 2024 Nano Lett. 41 13068 [19] Lan G, Xu H, Zhang Y, Cheng C, He B, Li J, He C,Wan C, Feng J,Wei H, Zhang J, Han X and Yu G 2023 Chin. Phys. Lett. 40 058501 [20] Wilson N P, Lee K, Cenker J, Xie K, Dismukes A H, Telford E J, Fonseca J, Sivakumar S, Dean C, Cao T, Roy X, Xu X and Zhu X 2021 Nat. Mater. 20 1657 [21] Klein J, Pingault B, Florian M, et al. 2023 ACS Nano 17 5316 [22] Panda J, Sahu S, Haider G, Thakur M K, Mosina K, Velický M, Vejpravova J, Sofer Z and Kalbáč M 2023 ACS Appl. Mater. Interfaces 16 1033 [23] Beck J 2004 Z. Anorg. Allg. Chem. 585 157 [24] Yang K,Wang G, Liu L, Lu D andWu H 2021 Phys. Rev. B 104 144416 [25] Shang C, Wang W, Zhang J, Zhao Y, Li J, Chen L, Jia G, Zhou N, Liu G, Hui M, Huang H, Zhang L, Dong G, Zhang J, Xu H, Li X and Yang R 2024 Adv. Funct. Mater. 34 2410783 [26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [28] LinhartWM, Rybak M, Birowska M, Scharoch P, Mosina K, Mazanek V, Kaczorowski D, Sofer Z and Kudrawiec R 2023 J. Mater. Chem. C 11 8423 [29] Torres K, Kuc A, Maschio L, Pham T, Reidy K, Dekanovsky L, Sofer Z, Ross F M and Klein J 2023 Adv. Funct. Mater. 33 2211366 [30] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592 [31] Ghosh P, Farooq U, Su H, Pei S, Li G, HeW, Dai J, Huang L and Huang M 2022 J. Mater. Sci. 57 5061 [32] Sharma J, Reynolds B, CraneMJ and Packard C E 2024 J. Phys. Chem. Lett. 15 4294 [33] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884 [34] Liu N, Wang C, Zhang Y, Pang F, Cheng Z, Zhang Y and Ji W 2024 Phys. Rev. B 109 214422 [35] Deng S, Sumant A V and Berry V 2018 Nano Today 22 14 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|