Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100302    DOI: 10.1088/1674-1056/add50d
GENERAL Prev   Next  

Dicke-Ising quantum battery of an ion chain driven by a mechanical oscillator

Jun Wen(文军)1, Zheng Wen(文政)2, Ping Peng(彭娉)3, and Guan-Qiang Li(李冠强)3,†
1 School of Mathematics, Physics and Statistics, Sichuan Minzu College, Ganzi 626001, China;
2 Office of Physics and Chemistry, Army Academy of Border and Coastal Defence, Xi'an 710108, China;
3 Department of Physics and Institute of Theoretical Physics, Shaanxi University of Science and Technology, Xi'an 710021, China
Abstract  A scheme for implementing quantum batteries in a realizable and controllable platform based on a trapped ion chain driven by a mechanical oscillator is proposed. The effects of the hopping interaction between the two-level ions and the coupling interaction between the ions and the external mechanical oscillator on the charging process of the battery are investigated. The importance of the counter-rotating wave terms in the system's Hamiltonian, which are often ignored, is analyzed, and it is found that the charging energy and the ergotropy of the battery are dramatically affected by the counter-rotating wave terms. The quantum phase transition of the two-level system is restrained by the counter-rotating wave terms due to the destruction of the quantum coherence. Lastly, the power-law dependence of the charging process on the distance between the ions is discussed. Our theoretical analysis provides a solid foundation for the development of a practical quantum battery.
Keywords:  quantum battery      Dicke-Ising model      charging ergotropy      trapped ion chain  
Received:  03 April 2025      Revised:  03 May 2025      Accepted manuscript online:  07 May 2025
PACS:  03.65.-w (Quantum mechanics)  
  05.70.-a (Thermodynamics)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the Research Foundation of Sichuan Minzu College (Grant No. KYQD2402C), the National Natural Science Foundation of China (Grant No. 11405100), and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant Nos. 2019JM-332 and 2020JM-507).
Corresponding Authors:  Guan-Qiang Li     E-mail:  liguanqiang@sust.edu.cn

Cite this article: 

Jun Wen(文军), Zheng Wen(文政), Ping Peng(彭娉), and Guan-Qiang Li(李冠强) Dicke-Ising quantum battery of an ion chain driven by a mechanical oscillator 2025 Chin. Phys. B 34 100302

[1] Campaioli F, Gherardini S, Quach J Q, Polini M and Andolina G M 2024 Rev. Mod. Phys. 96 031001
[2] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123
[3] Allahverdyan A E, Balian R and Nieuwenhuizen Th M 2004 Europhys. Lett. 67 565
[4] Hovhannisyan K V, Llobet M P, Huber M and Acín A 2013 Phys. Rev. Lett. 111 240401
[5] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015
[6] Campaioli F, Pollock F A, Binder F C, Celeri L Goold J, Vinjanampathy S and Modi K, 2017 Phys. Rev. Lett. 118 150601
[7] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106
[8] Andolina G M, Keck M, Mari A, Giovannetti V and Polini M 2019 Phys. Rev. B 99 205437
[9] Shi H L, Ding S, Wan Q K, Wang X H and Yang W L 2022 Phys. Rev. Lett. 129 130602
[10] Mazzoncini F, Cavina V, Andolina G M, Erdman P A and Giovannetti V 2023 Phys. Rev. A 107 032218
[11] Rodríguez R R, Ahmadi B, Suárez G, Mazurek P, Barzanjeh S and Horodecki P 2024 New J. Phys. 26 043004
[12] Pirmoradian F and Mølmer K 2019 Phys. Rev. A 100 043833
[13] Liu J, Segal D and Hanna G 2019 J. Phys. Chem. C 123 18303
[14] Carrega M, Crescente A, Ferrato D and Sassetti M 2020 New J. Phys. 22 083085
[15] Kamin F H, Tabesh F T, Salimi S, Kheirandish F and Santos A C 2020 New J. Phys. 22 003007
[16] Bai S Y and An J H 2020 Phys. Rev. A 102 060201(R)
[17] Zhao F, Dou F Q and Zhao Q 2021 Phys. Rev. A 103 033715
[18] Rodriguez R R, Ahmadi B, Mazurek P, Barzanjeh S, Alicki R and Horodecki P 2023 Phys. Rev. A 107 042419
[19] Gyhm J Y, Săfrańek D and Rosa D 2022 Phys. Rev. Lett. 128 140501
[20] Rossini D, Andolina G M, Rosa D, Carrega M and Polin M 2020 Phys. Rev. Lett. 125 236402
[21] Downing C A and Ukhtary M S 2023 Commun. Phys. 6 322
[22] Lu Z G, Tian G, Lu X Y and Shang C arXiv: 2405.03675v3
[23] Hu C K, Qiu J, Souza P J P, Yuan J, Zhou Y, Zhang L, Chu J, Pan X, Hu L and Li J 2022 Quantum Sci. Technol. 7 045018
[24] Maillette de Buy Wenniger I, Thomas S E, Maffei M, Wein S C, Pont M, Belabas N, Prasad S, Harouri A, Lemaître A, Sagnes I, Somaschi N, Auffèves A and Senellart P 2023 Phys. Rev. Lett. 131 260401
[25] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 3160
[26] Joshi J and Mahesh T S 2022 Phys. Rev. A 106 042601
[27] Deng X L, Porras D and Cirac J I 2005 Phys. Rev. A 72 063407
[28] Deng X L, Porras D and Cirac J I 2008 Phys. Rev. A 77 033403
[29] Blatt R and Roos C F 2012 Nat. Phys. 8 277
[30] Guo S A, Wu Y K, Ye J, Zhang L, Lian W Q, Yao R, Wang Y, Yan R Y, Yi Y J, Xu Y L, Li B W, Hou Y H, Xu Y Z, Guo W X, Zhang C, Qi B X, Zhou Z C, He L and Duan L M 2024 Nature 630 613
[31] Zhang K, Thompson J, Zhang X, Shen Y, Lu Y, Zhang S, Ma J, Vedral V, Gu M and Kim K 2019 Nat. Commun. 10 4692
[32] Noel C, Niroula P, Zhu D, Risinger A, Egan L, Biswas D, Cetina M, Gorshkov A V, Gullans M J, Huse D A and Monroe C 2022 Nat. Phys. 18 760
[33] Li P B, Zhou Y, GaoWB and Nori F 2020 Phys. Rev. Lett. 125 153602
[34] Jurcevic P, Lanyon B P, Hauke P, Hempel C, Zoller P, Blatt R and Roos F 2014 Nature 511 202
[35] Braak D 2011 Phys. Rev. Lett. 107 100401
[36] Bergholm V, Wieczorek W, Schulte-Herbr üggen T and Keyl M 2019 Quantum Sci. Technol. 4 034001
[37] Nation P D 2013 Phys. Rev. A 88 053828
[38] Zheng Q, Yao Y and Li Y 2016 Phys. Rev. A 93 013848
[39] Kounalakis M, Blanter Y M and Steele G A 2019 npj Quantum Information 5 100
[40] Tan H 2014 Phys. Rev. A 89 053829
[41] Xie H, Shang X, Liao C G, Chen Z H and Lin X M 2019 Phys. Rev. A 100 033803
[42] Zhang C Y and Jing J 2024 Phys. Rev. A 110 042421
[43] Chu Y, Kharel P, Yoon T, Frunzio L, Rakich P T and Schoelkopf R J 2018 Nature 563 666
[44] James D F V 1998 Appl. Phys. B 66 181
[45] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702
[46] Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[47] Zhao F, Dou F Q and Zhao Q 2022 Phys. Rev. Res. 4 013172
[48] Xie Q T, Zhong H H, Batchelor M T and Lee C H 2017 J. Phys. A: Math. Theor. 50 113001
[49] Casanova J, Romero G, Lizuain I, Ripoll J J G and Solano E 2010 Phys. Rev. Lett. 105 263603
[50] Huang J F and Law C K 2015 Phys. Rev. A 91 023806
[51] Zheng H, Zhu S Y and Zubariy M S 2008 Phys. Rev. Lett. 101 200404
[52] Gyhm J Y and Fischer U R 2024 AVS Quantum Sci. 6 012001
[53] Yang D L, Yang F M and Dou F Q 2024 Phys. Rev. B 109 235432
[54] Friedenauer A, Schmitz H, Glueckert J T, Porras D and Schaetz T 2008 Nat. Phys. 4 757
[55] Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
[1] Entanglement and energy transportation in central-spin quantum battery
Fan Liu(刘帆), Hui-Yu Yang(杨慧宇), Shuai-Li Wang(王帅立), Jun-Zhong Wang(王俊钟), Kun Zhang(张堃), and Xiao-Hui Wang(王晓辉). Chin. Phys. B, 2025, 34(2): 020306.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
No Suggested Reading articles found!