Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077502    DOI: 10.1088/1674-1056/27/7/077502

Asymmetric response of magnetic impurity in Bernal-stacked bilayer honeycomb lattice

Jin-Hua Sun(孙金华)1, Ho-Kin Tang(邓皓键)2
1 Department of Physics, Ningbo University, Ningbo 315211, China;
2 Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore

We utilize the Hirsch-Fye quantum Monte Carlo method to investigate the local moment formation of a magnetic impurity in a Bernal-stacked bilayer honeycomb lattice. A tight-binding model with the two most significant inter-layer hoppings, t1 between pairs of dimer sites and t3 between pairs of non-dimer sites, is used to describe the kinetic energy of the system. The local moment formed shows an asymmetric response to the inter-layer hoppings depending on which sublattice the impurity is coupled to. In the dimer and non-dimer couplings, the effects of t1 and t3 onto the local moment are quite opposite. When tuning the local moment, this asymmetric response is observed in a wide parameter range. This asymmetric response is also discussed by the computations of spectral densities, as well as correlation functions between the magnetic impurity and the conduction electrons.

Keywords:  local moments      bilayer honeycomb lattices      quantum Monte Carlo  
Received:  03 April 2018      Revised:  19 April 2018      Accepted manuscript online: 
PACS:  75.30.Hx (Magnetic impurity interactions)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  

Project supported by the National Natural Science Foundation of China (Grant No. 11604166), the Zhejiang Open Foundation of the Most Important Subjects, China (Grant No. xkzw11609), and the K. C. Wong Magna Fund in Ningbo University, China.

Corresponding Authors:  Jin-Hua Sun     E-mail:

Cite this article: 

Jin-Hua Sun(孙金华), Ho-Kin Tang(邓皓键) Asymmetric response of magnetic impurity in Bernal-stacked bilayer honeycomb lattice 2018 Chin. Phys. B 27 077502

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[6] Ribeiro R M and Peres N M R 2011 Phys. Rev. B 83 235312
[7] Sławinska J, Zasada I and Klusek Z 2010 Phys. Rev. B 81 155433
[8] Ganesh R, Sheng D N, Kim Y J and Paramekanti A 2011 Phys. Rev. B 83 144414
[9] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[10] Rozhkov A, Sboychakov A, Rakhmanov A and Nori F 2016 Phys. Rep. 648 1
[11] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[12] Tsvelick A and Wiegmann P 1984 Z. Phys. B-Condens. Matter 54 201
[13] Andrei N and Destri C 1984 Phys. Rev. Lett. 52 364
[14] Zhang F C and Lee T K 1983 Phys. Rev. B 28 33
[15] Coleman P 1984 Phys. Rev. B 29 3035
[16] Read N and Newns D 1983 J. Phys. C-Solid State Phys. 16 3273
[17] Kuramoto Y 1983 Z. Phys. B-Condens. Matter 53 37
[18] Gunnarsson O and Schonhammer S 1983 Phys. Rev. Lett. 50 604
[19] Affleck I 1990 Nucl. Phys. B 336 517
[20] Chang H R, Zhou J, Wang S X, Shan W Y and Xiao D 2015 Phys. Rev. B 92 241103
[21] Mastrogiuseppe D, Sandler N and Ulloa S E 2016 Phys. Rev. B 93 094433
[22] Kanazawa T and Uchino S 2016 Phys. Rev. D 94 114005
[23] Zheng S H, Wang R Q, Zhong M and Duan H J 2016 Sci. Rep. 6 36106
[24] Shi L P and Xiong S J 2009 Chin. Phys. Lett. 26 067103
[25] Gonzalez-Buxton C and Ingersent K 1998 Phys. Rev. B 57 14254
[26] Fritz L and Vojta M 2004 Phys. Rev. B 70 214427
[27] Vojta M and Fritz L 2004 Phys. Rev. B 70 094502
[28] Feng X Y, Chen W Q, Gao J H, Wang Q H and Zhang F C 2010 Phys. Rev. B 81 235411
[29] Shirakawa T and Yunoki S 2014 Phys. Rev. B 90 195109
[30] Killi M, Heidarian D and Paramekanti A 2011 New J. Phys. 13 053043
[31] Mohammadi Y and Moradian R 2014 Solid State Commun. 178 37
[32] Castro E V, Lopez-Sancho M P and Vozmediano M A H 2009 New J. Phys. 11 095017
[33] Hirsch J E and Fye R M 1986 Phys. Rev. Lett. 56 2521
[34] Fye R M and Hirsch J E 1988 Phys. Rev. B 38 433
[35] Fye R M, Hirsch J E and Scalapino D J 1987 Phys. Rev. B 35 4901
[36] Hu F M, Ma T X, Lin H Q and Gubernatis J E 2011 Phys. Rev. B 84 075414
[37] Bulut N, Tanikawa K, Takahashi S and Maekawa S 2007 Phys. Rev. B 76 045220
[38] Makuch K, Skolimowski J, Chakraborty P B, Byczuk K and Vollhardt D 2013 New J. Phys. 15 045031
[39] Sun J, Chen L and Lin H Q 2014 Phys. Rev. B 89 115101
[40] Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133
[41] Gubernatis J E, Hirsch J E and Scalapino D J 1987 Phys. Rev. B 35 8478
[42] Tang H K, Laksono E, Rodrigues J N B, Sengupta P, Assaad F F and Adam S 2015 Phys. Rev. Lett. 115 186602
[43] Cornaglia P S, Usaj G and Balseiro C A 2009 Phys. Rev. Lett. 102 046801
[44] Cheianov V V and Fal'ko V I 2006 Phys. Rev. Lett. 97 226801
[45] Dugaev V K, Litvinov V I and Barnas J 2006 Phys. Rev. B 74 224438
[46] Brey L, Fertig H A and Das Sarma S 2007 Phys. Rev. Lett. 99 116802
[47] Sun J H, Xu D H, Zhang F C and Zhou Y 2015 Phys. Rev. B 92 195124
[48] Sun J H, Wang L J, Hu X T, Li L and Xu D H 2018 Phys. Rev. B 97 035130
[49] Ma D, Chen H, Liu H and Xie X C 2018 Phys. Rev. B 97 045148
[50] Zhuang H B, Sun Q F and Xie X C 2009 Europhys. Lett. 86 58004
[51] Uchoa B, Yang L, Tsai S W, Peres N M R and Castro Neto A H 2009 Phys. Rev. Lett. 103 206804
[52] Saha K, Paul I and Sengupta K 2010 Phys. Rev. B 81 165446
[1] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[6] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
[7] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[8] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[9] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[10] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
No Suggested Reading articles found!