Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 063302    DOI: 10.1088/1674-1056/adc40c
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Tuning the laser-dressed attosecond transient absorption spectra of a singly excited helium state using a shaped attosecond pulse with a spectral minimum

Yong Fu(傅勇)1, Feier Xu(徐霏儿)1, and Cheng Jin(金成)1,2,†
1 Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
2 MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Engineering Research Center of Semiconductor Device Optoelectronic Hybrid Integration in Jiangsu Province, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The attosecond extreme ultraviolet (XUV) pulse pump and femtosecond infrared (IR) pulse probe scheme is commonly used to study the dynamics and attosecond transient absorption (ATA) spectra of microscopic systems. In a recent report [Proc. Natl. Acad. Sci. USA 121 e2307836121 (2024 )], we showed that shaped XUV pulses with spectral minima can significantly alter the absorption line shape of helium's 2s2p doubly excited state within a few tens of attoseconds. However, it remains unclear if similar effects could be observed in a singly excited state. In this study, we use shaped XUV pulses to excite helium's 2p singly excited state and couple the 2p and 3d states with a delayed IR pulse. Comparing these results with those from Gaussian XUV pulses, we find that the ATA spectra for the shaped XUV pulses exhibit more pronounced changes with delay, while the changes for the Gaussian pulses are gradual. We also explain these differences through population changes and analytical models. Our findings show that shaped XUV pulses can regulate the dynamics and absorption spectra of a singly excited state
Keywords:  attosecond transient absorption      electron dynamics      spectral minima      line shape  
Received:  25 February 2025      Revised:  20 March 2025      Accepted manuscript online:  24 March 2025
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  78.47.jb (Transient absorption)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  34.80.Dp (Atomic excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274230) and the Funding of Nanjing University of Science and Technology (Grant No. TSXK2022D005).
Corresponding Authors:  Cheng Jin     E-mail:  cjin@njust.edu.cn

Cite this article: 

Yong Fu(傅勇), Feier Xu(徐霏儿), and Cheng Jin(金成) Tuning the laser-dressed attosecond transient absorption spectra of a singly excited helium state using a shaped attosecond pulse with a spectral minimum 2025 Chin. Phys. B 34 063302

[1] Fano U 1961 Phys. Rev. 124 1866
[2] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[3] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
[4] Gaarde M B, Buth C, Tate J L and Schafer K J 2011 Phys. Rev. A 83 013419
[5] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Chris H. Greene C H and Pfeifer T 2013 Science 340 716
[6] Kaldun A, Blättermann A, Stooß S, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C D, Burgdörfer J and Pfeifer T 2016 Science 354 738
[7] Liao C T, Sandhu A, Camp S, Schafer K J and Gaarde M B 2015 Phys. Rev. Lett. 114 143002
[8] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroõero J, Martín F and Thomas Pfeifer T 2014 Nature 516 374
[9] Lin C D and Chu W C 2013 Science 340 694
[10] Xu H, Cao W, Zhang J, Mo Y, Mi K, Yang Z, Zhang Q and Lu P 2021 Opt. Express 29 11342
[11] Stooß V, Cavaletto S M, Donsa S, Blättermann A, Birk P, Keitel C H, Brezinová I, Burgdörfer J, Ott C and Pfeifer T 2018 Phys. Rev. Lett. 121 173005
[12] Yang Z Q, Ye D F and Fu L B 2018 Chin. Phys. B 27 013301
[13] Teng H, He X K, Zhao K and Wei Z Y 2018 Chin. Phys. B 27 074203
[14] Zhao J, Liu J, Wang X, Yuan J and Zhao Z 2022 Chin. Phys. Lett. 39 123201
[15] TaoW,Wang L, Song P, Xiao F,Wang J, Zheng Z, Zhao J,Wang X and Zhao Z 2023 Chin. Phys. Lett. 40 063201
[16] He Y, Ott C, Pfeifer T and Gaarde M B 2024 Phys. Rev. Research 6 013103
[17] He Y, Liu Z, Ott C, Pfeiffer A N, Sun S, Gaarde M B, Pfeifer T and Hu B 2022 Phys. Rev. Lett. 129 273201
[18] WangW, Sun S, Li J, Zheng D, Huang S, Tian H, Yang H and Li J 2023 Chin. Phys. B 33 010701
[19] Bækhøj J E and Madsen L B 2016 Phys. Rev. A 94 043414
[20] Cheng Y, Chini M,Wang X, Alberto G C, Palacios A, Argenti L, Martín F and Chang Z 2016 Phys. Rev. A 94 023403
[21] Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M and Leone S R 2020 Phys. Rev. A 101 063414
[22] Jin R et al. 2025 Phys. Rev. A 111 012808
[23] Rørstad J J, Ravn N S W, Yue L and Madsen L B 2018 Phys. Rev. A 98 053401
[24] Golubev N V, Vaníček J and Kuleff A I 2021 Phys. Rev. Lett. 127 123001
[25] Rott F, Reduzzi M, Schnappinger T, Kobayashi Y, Chang K F, Timmers T, Neumark D M, Riedle R V and Leone S R 2021 Struct. Dyn. 8 034104
[26] Zhang B, Zhao J and Zhao Z X 2018 Chin. Phys. Lett. 35 043201
[27] Peng P, Mi Y, Lytova M, Britton M, Ding X, Naumov A Y, Corkum P B and Villeneuve D M 2022 Nat. Photon. 16 45
[28] Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y and Villeneuve D M 2019 Nat. Commun. 10 5269
[29] Dong F and Liu J 2022 Phys. Rev. A 106 063107
[30] Seres E, Seres J, Serrat C and Namba S 2016 Phys. Rev. B 94 165125
[31] Du M, Liu C, Zheng Y, Zeng Z, and Li R 2019 Phys. Rev. A 100 043840
[32] Yamada S and Yabana K 2020 Phys. Rev. B 101 165128
[33] Cistaro G, Plaja L, Martín F and Picón A 2021 Phys. Rev. Research 3 013144
[34] Palo N D, Inzani G, Dolso G L, Talarico M, Bonetti S and Lucchini M 2024 APL Photonics 9 020901
[35] Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M and Leone S R 2014 Phys. Rev. A 89 023408
[36] Chu W C, Morishita T and Lin C D 2014 Phys. Rev. A 89 033427
[37] Chu W C, Zhao S F and Lin C D 2011 Phys. Rev. A 84 033426
[38] Chu W C and Lin C D 2013 Phys. Rev. A 87 013415
[39] Chu W C and Lin C D 2012 Phys. Rev. A 85 013409
[40] Luo S, Liu J, Li X, Zhang D, Yu X, Ren D, Li M, Yang Y, Wang Z, Ma P, Wang C, Zhao J, Zhao Z and Ding D 2021 Phys. Rev. Lett. 126 103202
[41] Chen S, Bell M J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R and Schafer K J 2012 Phys. Rev. A 86 063408
[42] Borisova G D, Belda P B, Hu S, Birk P, Stooß V, Hartmann M, Fan D, Moshammer R, Saenz A, Ott C and Pfeifer T 2024 Phys. Rev. Research 6 033326
[43] Liao C T, Li X, Haxton D J, Rescigno T N, Lucchese R R, McCurdy C W and Sandhu A 2017 Phys. Rev. A 95 043427
[44] Yuan G, Jiang S, Wang Z, Hua W, Yu C, Jin C and Lu R 2019 Struct. Dyn. 6 054102
[45] Li X, Yuan G, Tang X, Fu Y, Wang K, Wang B and Jin C 2023 Commun. Theor. Phys. 75 015503
[46] Wu X, Yang Z, Zhang S, Ma X, Liu J and Difa Ye 2021 Phys. Rev. A 103 L061102
[47] Wu M, Chen S, Gaarde M B and Schafer K J 2013 Phys. Rev. A 88 043416
[48] Venkatesh A and Ho P J 2025 Phys. Rev. A 111 L021101
[49] Zhang X, Liao Y, Chen Y, Yu M, Li S, He M, Liu K, Lu P and Zhou Y 2024 Phys. Rev. A 109 063102
[50] Fu Y, Wang B, Wang K, Tang X, Li B, Yin Z, Han J, Lin C D and Jin C 2024 Proc. Natl. Acad. Sci. USA 121 e2307836121
[51] Schoun S B, Chirla R, Wheeler J, Roedig C, Agostini P, DiMauro L F, Schafer K J and Gaarde M B 2014 Phys. Rev. Lett. 112 153001
[52] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, Silvestri S D and Stagira S 2011 Nat. Phys. 7 822
[53] Rupenyan A, Kraus P M, Schneider J and Wörner H J 2013 Phys. Rev. A 87 031401 (R)
[54] Rupenyan A, Kraus P M, Schneider J and Wörner H J 2013 Phys. Rev. A 87 033409
[55] Jin C, Wang S J, Zhao S F, Le A T and Lin C D 2020 Phys. Rev. A 102 013108
[56] Jin C, Wang S J, Zhao X, Zhao S F and Lin C D 2020 Phys. Rev. A 101 013429
[57] Yin Z, Tang X, Zhang C, Fu Y, Han J, You J, Wang B and Jin C 2024 Phys. Rev. A 110 023107
[58] Li X, Han J, Liu L, Wang X, Wang G and Jin C 2024 Phys. Rev. A 109 023103
[59] Chen J, JiangW, Qiao Y, Yang Y and Chen J 2025 Chin. Phys. Lett. 42 013201
[60] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205
[61] Zhang C P and Miao X Y 2024 Chin. Phys. Lett. 40 124201
[1] Theory and applications of attosecond transient absorption spectroscopy: From atoms to solids
Ennan Cui and Difa Ye(叶地发). Chin. Phys. B, 2025, 34(7): 073201.
[2] Discharge mode and particle transport in radio frequency capacitively coupled Ar/O2 plasma discharges
Zhuo-Yao Gao(高卓瑶), Wan Dong(董婉), Chong-Biao Tian(田崇彪), Xing-Zhao Jiang(蒋星照), Zhong-Ling Dai(戴忠玲), and Yuan-Hong Song(宋远红). Chin. Phys. B, 2024, 33(9): 095203.
[3] Manipulating the electron dynamics in the non-sequential double ionization process of Ar atoms by an orthogonal two-color laser field
Pengzhao Wang(王鹏昭), Lijie Qian(钱丽洁), Zhenrong Sun(孙真荣), and Yan Yang(杨岩). Chin. Phys. B, 2024, 33(6): 063201.
[4] Electron characteristics and dynamics in sub-millimeter pulsed atmospheric dielectric barrier discharge
Junlin Fang(方骏林), Yarong Zhang(张亚容), Chenzi Lu(卢陈梓), Lili Gu(顾莉莉), Shaofeng Xu(徐少锋), Ying Guo(郭颖), and Jianjun Shi(石建军). Chin. Phys. B, 2024, 33(1): 015201.
[5] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[6] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[7] Comparison experiments of neon and helium buffer gases cooling in trapped 199Hg+ ions linear trap
Yang Yu-Na (杨玉娜), Liu Hao (柳浩), He Yue-Hong (何跃宏), Yang Zhi-Hui (杨智慧), Wang Man (汪漫), Chen Yi-He (陈义和), She Lei (佘磊), Li Jiao-Mei (李交美). Chin. Phys. B, 2014, 23(9): 093702.
[8] Laser frequency stabilization and shifting by usingmodulation transfer spectroscopy
Cheng Bing (程冰), Wang Zhao-Ying (王兆英), Wu Bin (吴彬), Xu Ao-Peng (许翱鹏), Wang Qi-Yu (王启宇), Xu Yun-Fei (徐云飞), Lin Qiang (林强). Chin. Phys. B, 2014, 23(10): 104222.
[9] Method of accurately calculating mean field operator in multi-configuration time-dependent Hartree-Fock frame
Li Wen-Liang (李文亮), Zhang Ji (张季), Yao Hong-Bin (姚洪斌). Chin. Phys. B, 2013, 22(9): 093202.
[10] Selective triggering of phase change in dielectric by femtosecond pulse trains based on electron dynamics control
Xu Chuan-Cai (徐传彩), Jiang Lan (姜澜), Leng Ni (冷妮), Liu Peng-Jun (刘鹏军). Chin. Phys. B, 2013, 22(4): 045203.
[11] Precise measurement of the line width of the photoassociation spectra of ultracold molecules by a frequency shifter
Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Ji Zhong-Hua (姬中华), Zhang Yi-Chi (张一驰), Li Yu-Qing (李玉清), Wang Li-Rong (汪丽蓉), Zhao Yan-Ting (赵延霆), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2012, 21(9): 093701.
[12] Analysis of DαHα spectrum emitted in front of the limiter in HT--7
Huang Juan (黄娟), Wan Bao-Nian (万宝年), Daren Stotlerb, Xiao Bing-Jia(肖炳甲)a​, Wu Zhen-Wei (吴振伟), the HT-- team. Chin. Phys. B, 2008, 17(12): 4562-4567.
[13] Study of particle behaviour at the edge in HT-7 tokamak
Xu Wei (徐伟), Wan Bao-Nian (万宝年), Zhou Qian (周倩), Wu Zhen-Wei (吴振伟), Mao Jiao-Shan (毛剑珊), Li Jian-Gang (李建刚). Chin. Phys. B, 2004, 13(9): 1510-1515.
No Suggested Reading articles found!