Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 025201    DOI: 10.1088/1674-1056/ad9910
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental study on performance of 100-kW low temperature superconducting steady-state magnetoplasmadynamic thruster

Cheng Zhou(周成)1,2,3, Peng Wu(吴鹏)3, Yun-Tao Song(宋云涛)1,2, Jin-Xing Zheng(郑金星)1,2, Yong Li(李永)3,†, Ge Wang(王戈)3, and Hai-Yang Liu(刘海洋)2
1 University of Science and Technology of China, Hefei 230031, China;
2 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
3 Beijing Institute of Control Engineering, Beijing 100080, China
Abstract  Applied field magnetoplasmadynamic thrusters (AF-MPDTs), with their high specific impulse and considerable thrust, are increasingly favored for large-scale space missions. This paper presents the composition, functionality, and testing methods of a high-power electric propulsion performance testing system, along with the vacuum ignition test results of a 100 kW superconducting MPD thruster. The relationships between thruster efficiency, magnetic field strength, current, and mass flow rate are analyzed. For each combination of current and flow rate in an AF-MPDT, there is an optimal magnetic field strength where the thruster efficiency reaches its peak. Under conditions of 320 A current and 60 mg/s flow rate, the optimal magnetic field strength is 0.5 T, yielding the highest thruster efficiency of 71%.
Keywords:  magnetoplasmadynamic thruster      high-power electric propulsion      superconduction      performance measurements  
Received:  26 September 2024      Revised:  26 November 2024      Accepted manuscript online:  02 December 2024
PACS:  52.75.Di (Ion and plasma propulsion)  
  85.70.Rp (Magnetic levitation, propulsion and control devices)  
Corresponding Authors:  Yong Li     E-mail:  18510489511@163.com

Cite this article: 

Cheng Zhou(周成), Peng Wu(吴鹏), Yun-Tao Song(宋云涛), Jin-Xing Zheng(郑金星), Yong Li(李永), Ge Wang(王戈), and Hai-Yang Liu(刘海洋) Experimental study on performance of 100-kW low temperature superconducting steady-state magnetoplasmadynamic thruster 2025 Chin. Phys. B 34 025201

[1] Auweter-Kurtz M, Kriille G and Kurtz H 1997 The Investigation of Applied-Field MPD Thrusters on the International Space Station The 25th International Electric Propulsion Conference (Cleveland, Ohio: Electric Rocket Propulsion Society) p. 721
[2] Russell C T, Abshire J and A’Hearn M 1996 Advances in Space Research 18 75
[3] Zhang Z, Zhao Z, Liu X and Wang N 2024 Chinese Journal of Aeronautics 37 38
[4] Li X K, Che B X, Cheng M S, Guo D W, Wang M G and Yang Y T 2020 Chin. Phys. B 29 115201
[5] Mou H, Jin Y Z, Yang J, Xia X and Fu Y L 2022 Chin. Phys. B 31 075202
[6] Wu P,Wang Y, Li Y, Zhou C,Wang Y, Chen Z, Han X and Tang H 2022 Acta Astronautica
[7] Kumar Meena L, Anand A and Gour A S 2022 IOP Conference Series: Materials Science and Engineering 1240 012002
[8] Sasoh A, Mizutani K and Iwakawa A 2017 AIP Advances 7 065204
[9] Sasoh A and Arakawa Y 1992 Journal of Propulsion and Power 8 98
[10] Voronov A S, Troitskiy A A, Egorov I D, Samoilenkov S V and Vavilov A P 2020 Journal of Physics: Conference Series 1686 012023
[11] Boxberger A, Behnke A and Herdrich G 2019 Current Advances in Optimization of Operative Regimes of Steady State Applied Field MPD Thrusters The 36th International Electric Propulsion Conference (University of Vienna, Austria: Electric Rocket Propulsion Society) p. 585
[12] Boxberger A and Herdrich G 2017 Integral measurements of 100 kW class steady state applied-field magnetoplasmadynamic thruster SX3 and perspectives of AF-MPD technology The 35th International Electric Propulsion Conference (Georgia Institute of Technology, Atlanta, Georgia, USA: Electric Rocket Propulsion Society) p. 339
[13] Wang B, Tang H, Wang Y, Lu C, Zhou C, Dong Y, Wang G, Cong Y, Luu D and Cao J 2018 Jove-Journal of Visualized Experiments 2 20
[14] Wang B, Yang W, Tang H, Li Z, Kitaeva A, Chen Z, Cao J, Herdrich G and Zhang K 2018 Measurement Science and Technology 29 075302
[15] Gallimore A D, Kelly A J and Jahn R G 1993 Journal of Propulsion and Power 9 361
[16] Gallimore A D, Myers R M, Kelly A J and Jahn R G 1994 Journal of Propulsion and Power 10 262
[17] Dinulescu H A and Pfender E 1980 J. Appl. Phys. 51 3149
[1] Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
Long Chen(陈龙), Zi-Chen Kan(阚子晨), Wei-Fu Gao(高维富), Ping Duan(段萍), Jun-Yu Chen(陈俊宇), Cong-Qi Tan(檀聪琦), and Zuo-Jun Cui(崔作君). Chin. Phys. B, 2024, 33(1): 015203.
[2] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[3] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[4] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[5] Experimental and numerical investigation of a Hall thruster with a chamfered channel wall
Hong Li(李鸿), Guo-Jun Xia(夏国俊), Wei Mao(毛威), Jin-Wen Liu(刘金文), Yong-Jie Ding(丁永杰), Da-Ren Yu(于达仁), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2018, 27(10): 105209.
[6] Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(8): 085204.
[7] Particle-in-cell simulation for the effect of magnetic cusp on discharge characteristics in a cylindrical Hall thruster
Sheng-Tao Liang(梁圣涛), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2018, 27(4): 045201.
[8] Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Jing Qi(齐婧), Wei-Chong Tang(汤唯冲), Ke Xiao(肖珂), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2017, 26(3): 035203.
[9] Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2016, 25(4): 045204.
[10] Particle-in-cell simulation for different magnetic mirror effects on the plasma distribution in a cusped field thruster
Liu Hui (刘辉), Chen Peng-Bo (陈蓬勃), Zhao Yin-Jian (赵隐剑), Yu Da-Ren (于达仁). Chin. Phys. B, 2015, 24(8): 085202.
[11] Low-frequency oscillations in Hall thrusters
Wei Li-Qiu (魏立秋), Han Liang (韩亮), Yu Da-Ren (于达仁), Guo Ning (郭宁). Chin. Phys. B, 2015, 24(5): 055201.
[12] A radial non-uniform helicon equilibrium discharge model
Cheng Yu-Guo (成玉国), Cheng Mou-Sen (程谋森), Wang Mo-Ge (王墨戈), Li Xiao-Kang (李小康). Chin. Phys. B, 2014, 23(10): 105202.
[13] Laser propulsion with a high specific impulse using a thin film propellant
Zhang Yi(张翼), Lu Xin(鲁欣), Zhou Mu-Lin(周木林), Lin Xiao-Xuan(林晓宣), Zheng Zhi-Yuan(郑志远), Li Yu-Tong(李玉同), and Zhang Jie(张杰). Chin. Phys. B, 2011, 20(8): 087901.
[14] The characteristics of confined ablation in laser propulsion
Zheng Zhi-Yuan (郑志远), Zhang Jie (张杰), Hao Zuo-Qiang (郝作强), Yuan Xiao-Hui (远晓辉), Zhang Zhe (张喆), Lu Xin (鲁欣), Wang Zhao-Hua (王兆华), Wei Zhi-Yi (魏志义). Chin. Phys. B, 2006, 15(3): 580-584.
[15] NEUTRAL HYDROGEN DENSITY MEASUREMENT IN TMSPP
YAO XIN-ZI (姚鑫兹), T.F.YANG, F.R.CHANG-DIAZ. Chin. Phys. B, 1993, 2(7): 516-522.
No Suggested Reading articles found!