Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120503    DOI: 10.1088/1674-1056/ad7fcf
GENERAL Prev   Next  

A fractional-order chaotic Lorenz-based chemical system: Dynamic investigation, complexity analysis, chaos synchronization, and its application to secure communication

Haneche Nabil1,† and Hamaizia Tayeb2
1 Mathematical Modeling & Simulation Laboratory, Department of Mathematics, University of Mentouri Brothers, Constantine, Algeria;
2 Department of Mathematics, University of Mentouri Brothers, Constantine, Algeria
Abstract  Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields, including cryptography, optics, and secure communications. In this paper, a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed. Some basic dynamical properties, such as stability of equilibria, Lyapunov exponents, bifurcation diagrams, Poincaré map, and sensitivity to initial conditions, are studied. By adopting the Adomian decomposition algorithm (ADM), the numerical solution of the fractional-order system is obtained. It is found that the lowest derivative order in which the proposed system exhibits chaos is $q=0.694$ by applying ADM. The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams. In addition, the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis, such as the 0-1 test and $C_{0}$ complexity. Moreover, modified projective synchronization has been implemented based on the stability theory of fractional-order systems. This paper presents the application of the modified projective synchronization in secure communication, where the information signal can be transmitted and recovered successfully through the channel. MATLAB simulations are provided to show the validity of the constructed secure communication scheme.
Keywords:  chaotic system      Adomian decomposition method      modified projective synchronization      secure communication  
Received:  12 August 2024      Revised:  14 September 2024      Accepted manuscript online:  26 September 2024
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Vx (Communication using chaos)  
Corresponding Authors:  Haneche Nabil     E-mail:  nabil.haneche@doc.umc.edu.dz

Cite this article: 

Haneche Nabil and Hamaizia Tayeb A fractional-order chaotic Lorenz-based chemical system: Dynamic investigation, complexity analysis, chaos synchronization, and its application to secure communication 2024 Chin. Phys. B 33 120503

[1] Bekir A and Zahran E H 2022 Chin. Phys. B 31 060401
[2] Ding D, Niu Y, Zhang H, Yang Z, Wang J, Wang W and Wang M 2024 Chin. Phys. B 33 050503
[3] Bukhari A H, Raja M A Z, Shoaib M and Kiani A K 2022 Chaos, Solitons Fractals 161 112375
[4] Chaudhary M and Singh M K 2022 Phys. Scr. 97 074001
[5] Farman M, Akgül A, Saleem M U, Imtiaz S and Ahmad A 2020 Pramana 94 1
[6] AbdelAty A M, Al-Durra A, Zeineldin H and El-Saadany E F 2024 Int. J. Electr. Power Energy Syst. 156 109746
[7] Rajagopal K, Karthikeyan A and Ramakrishnan B 2021 Chin. Phys. B 30 120512
[8] Pahnehkolaei S M A, Alfi A and Machado J T 2022 Chaos, Solitons Fractals 155 111658
[9] Cafagna D and Grassi G 2015 Chin. Phys. B 24 080502
[10] Khennaoui A A, Ouannas A, Bendoukha S, Wang X and Pham V T 2018 Entropy 20 530
[11] Podlubny I 2009 Fractional Differential Equations (New York: Academic Press)
[12] Caputo M and Fabrizio M 2015 Prog. Fract. Differ. Appl. 1 73
[13] Atangana A and Baleanu D 2016 Therm. Sci. 20 763
[14] He S, Wang H and Sun K 2022 Chin. Phys. B 31 060501
[15] Atangana A and Secer A 2013 Abstr. Appl. Anal. 2013 279681
[16] Strogatz S H 2018 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Boca Raton: CRC press)
[17] Hannachi F 2019 SN Appl. Sci. 1 158
[18] Kocamaz U E, Wang H and Uyaroǧlu Y 2014 Nonlinear Dyn. 75 63
[19] Aqeel M, Azam A and Ayub J 2022 Chin. J. Phys. 77 1331
[20] Bodale I and Oancea V A 2015 Chaos Solitons Fractals 78 1
[21] Yadav V K, Das S, Bhadauria B S, Singh A K and Srivastava M 2017 Chin. J. Phys. 55 594
[22] He S, Sun K and Banerjee S 2016 Eur. Phys. J. Plus 131 1
[23] Dou G, Liu J, Zhang M, Zhao K and Guo M 2022 Eur. Phys. J. Plus 231 3151
[24] Kheiri H and Naderi B 2015 Iranian J. Math. Chem. 6 81
[25] Garcia-Fernández J M, Nieto-Villar J M and Rieumont-Briones J 1996 Phys. Scr. 53 643
[26] Carroll T L and Pecora L M 1990 Phys. Rev. Lett. 64 821
[27] Sang J Y, Yang J and Yue L J 2011 Chin. Phys. B 20 080507
[28] Shukla V K, Joshi M C, Rajchakit G, Chakrabarti P, Jirawattanapanit A and Mishra P K 2023 Differ. Equ. Dyn. Syst. 20 1
[29] Ling L, Yuan C and Ling L 2010 Chin. Phys. B 19 080506
[30] Grassi G 2012 Chin. Phys. B 21 050505
[31] Gholizade-Narm H, Azemi A and Khademi M 2013 Chin. Phys. B 22 070502
[32] Zhu Y R, Wang J L and Han X 2024 Neurocomputing 591 127766
[33] Du H, Zeng Q, Wang C and Ling M 2010 Nonlinear Anal. Real World Appl. 11 705
[34] Du H, Zeng Q and Wang C 2009 Chaos Solitons Fractals 42 2399
[35] Li G H 2007 Chaos Solitons Fractals 32 1786
[36] Haneche N and Hamaizia T 2024 Phys. Scr. 90 095203
[37] Wu X, Fu Z and Kurths J 2015 Phys. Scr. 90 045210
[38] Khan A, Nigar U and Chaudhary H 2022 Int. J. Appl. Comput. Math 8 170
[39] Benkouider K, Bouden T and Yalcin M E 2020 SN Appl. Sci. 2 1
[40] Bonny T, Nassan W A, Vaidyanathan S and Sambas A 2023 Multimed Tools Appl. 82 34229
[41] Wu X, Wang H and Lu H 2012 Nonlinear Anal. Real World Appl. 13 1441
[42] Liu M, Yu W, Wang J, Gao K and Zhou Z 2023 Int. J. Dynam. Control 11 1952
[43] Gorenflo R and Mainardi F 1997 Fractal and Fractional Calculus in Continuum Mechanics (Wien: Springer)
[44] Andrew L Y T, Li X F, Chu Y D and Hui Z 2015 Chin. Phys. B 24 100502
[45] He S, Sun K and Wang H 2016 Math. Meth. Appl. Sci. 39 2965
[46] Shi K, An X, Xiong L, Yang F and Zhang L 2022 Phys. Scr. 97 045201
[47] Fu H and Lei T 2022 Symmetry 14 484
[48] Lorenz E N 1963 Journal of Atmospheric Sciences 20 130
[49] Poland D 1993 Phys. D 65 86
[50] Matignon D 1996 Computational Engineering in Systems and Applications 2 963
[51] Li C, Gong Z, Qian D and Chen Y 2010 Chaos 20 013127
[52] Sun K H, Liu X and Zhu C X 2010 Chin. Phys. B 19 110510
[53] Wang S, He S, Yousefpour A, Jahanshahi H, Repnik R and Perc M 2020 Chaos Solitons Fractals 131 109521
[1] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[2] Two-dimensional-lag complex logistic map with complex parameters and its encryption application
Fangfang Zhang(张芳芳), Jinbo Wu(武金波), Lei Kou(寇磊), Fengying Ma(马凤英), Liming Wu(吴黎明), and Xue Zhang(张雪). Chin. Phys. B, 2024, 33(5): 050505.
[3] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
[4] Double quantum images encryption scheme based on chaotic system
She-Xiang Jiang(蒋社想), Yang Li(李杨), Jin Shi(石锦), and Ru Zhang(张茹). Chin. Phys. B, 2024, 33(4): 040306.
[5] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[6] Sliding-mode-based preassigned-time control of a class of memristor chaotic systems
Jinrong Fan(樊金荣), Qiang Lai(赖强), Qiming Wang(汪其铭), and Leimin Wang(王雷敏). Chin. Phys. B, 2024, 33(11): 110205.
[7] Characteristic analysis of 5D symmetric Hamiltonian conservative hyperchaotic system with hidden multiple stability
Li-Lian Huang(黄丽莲), Yan-Hao Ma(马衍昊), and Chuang Li(李创). Chin. Phys. B, 2024, 33(1): 010503.
[8] Dynamical analysis, geometric control and digital hardware implementation of a complex-valued laser system with a locally active memristor
Yi-Qun Li(李逸群), Jian Liu(刘坚), Chun-Biao Li(李春彪), Zhi-Feng Hao(郝志峰), and Xiao-Tong Zhang(张晓彤). Chin. Phys. B, 2023, 32(8): 080503.
[9] Corrigendum to “The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation andcoexisting attractors”
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2023, 32(6): 069902.
[10] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[11] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[12] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[13] Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system
Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强). Chin. Phys. B, 2023, 32(10): 100504.
[14] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[15] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
No Suggested Reading articles found!