Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 114204    DOI: 10.1088/1674-1056/ad7c2e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Rapid hologram generation through backward ray tracing and adaptive-resolution wavefront recording plane

Jianying Zhu(朱建英)1,2, Yong Bi(毕勇)1, Minyuan Sun(孙敏远)1, and Weinan Gao(高伟男)1,†
1 Applied Laser Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  An advanced method for rapidly computing holograms of large three-dimensional (3D) objects combines backward ray tracing with adaptive resolution wavefront recording plane (WRP) and adaptive angular spectrum propagation. In the initial phase, a WRP with adjustable resolution and sampling interval based on the object's size is defined to capture detailed information from large 3D objects. The second phase employs an adaptive angular spectrum method (ASM) to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram (CGH). The computation process is accelerated using CUDA and OptiX. Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.
Keywords:  computer-generated hologram (CGH)      wavefront recording plane (WRP)      backward ray tracing  
Received:  13 July 2024      Revised:  04 September 2024      Accepted manuscript online:  18 September 2024
PACS:  42.40.Jv (Computer-generated holograms)  
  42.40.-i (Holography)  
Fund: Project supported by the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020 (Grant No. Z201100004320006).
Corresponding Authors:  Weinan Gao     E-mail:  wngao@mail.ipc.ac.cn

Cite this article: 

Jianying Zhu(朱建英), Yong Bi(毕勇), Minyuan Sun(孙敏远), and Weinan Gao(高伟男) Rapid hologram generation through backward ray tracing and adaptive-resolution wavefront recording plane 2024 Chin. Phys. B 33 114204

[1] Lucente M E 1993 J. Electron. Imaging 2 28
[2] Kim S C and Kim E S 2008 Appl. Opt. 47 D55
[3] Pan Y, Xu X, Solanki S, Liang X, Tanjung R B A, Tan C and Chong T C 2009 Opt. Express 17 18543
[4] Shimobaba T, Masuda N and Ito T 2009 Opt. Lett. 34 3133
[5] Li X, Liu J, Pan Y and Wang Y 2017 Opt. Commun. 390 22
[6] Im D, Cho J, Hahn J, Lee B and Kim H 2015 Opt. Express 23 2863
[7] Matsushima K and Nakahara S 2009 Appl. Opt. 48 H54
[8] Wang F, Shimobaba T, Zhang Y, Kakue T and Ito T 2021 Opt. Express 29 35442
[9] Chen J S and Chu D 2015 Opt. Express 23 18143
[10] Zhao Y, Cao L, Zhang H, Kong D and Jin G 2015 Opt. Express 23 25440
[11] Zhang H, Cao L and Jin G 2017 Appl. Opt. 56 F138
[12] Horisaki R, Takagi R and Tanida J 2018 Appl. Opt. 57 3859
[13] Shi L, Li B, Kim C, Kellnhofer P and Matusik W 2021 Nature 591 234
[14] Liu S C and Chu D 2021 Opt. Express 29 27373
[15] Shi L, Li B and Matusik W 2022 Light: Sci. Appl. 11 247
[16] Liu K, Wu J, He Z and Cao L 2023 Opto-Electron. Adv. 6 220135
[17] Wu J, Liu K, Sui X and Cao L 2021 Opt. Lett. 46 2908
[18] Jia J, Wang Y, Liu J, Li X, Pan Y, Sun Z, Zhang B, Zhao Q and Jiang W 2013 Appl. Opt. 52 1404
[19] Yang Y, Zhu J, Sun M and Bi Y 2024 Chin. Phys. B 33 044201
[20] Pi D, Liu J, Han Y, Yu S and Xiang N 2020 Opt. Express 28 9833
[21] Ikawa S, Takada N, Araki H, Niwase H, Sannomiya H, Nakayama H, Oikawa M, Mori Y, Kakue T, Shimobaba T and Ito T 2020 Chin. Opt. Lett. 18 010901
[22] Blinder D, Chlipala M, Kozacki T and Schelkens P 2021 Opt. Lett. 46 2188
[23] Wang Y, Chen Z, Sang X, Li H and Zhao L 2018 Opt. Commun. 410 768
[24] Liu S, Wei H, Li N, Liu Z and Zhang J 2019 Opt. Commun. 443 76
[25] Ichikawa T, Yamaguchi K and Sakamoto Y 2013 Appl. Opt. 52 A201
[26] Wang Y, Sang X, Chen Z, Li H and Zhao L 2018 Opt. Commun. 429 12
[27] Sun M Y, Yuan Y, Bi Y, Zhang S, Zhu J Y and Zhang W P 2020 Opt. Express 28 34994
[28] Muffoletto R P, Tyler J M and Tohline J E 2007 Opt. Express 15 5631
[29] Weng J, Shimobaba T, Okada N, Nakayama H, Oikawa M, Masuda N and Ito T 2012 Opt. Express 20 4018
[30] Shimobaba T, Matsushima K, Kakue T, Masuda N and Ito T 2012 Opt. Lett. 37 4128
[31] Zhang W, Zhang H and Jin G 2020 Opt. Lett. 45 4416
[32] Lee J Y and Greengard L 2005 J. Comput. Phys. 206 1
[33] Zhang W, Zhang H and Jin G 2020 Opt. Lett. 45 1543
  • 1. 2024-114204-SI.mp4(13515KB)

[1] Accelerated generation of holograms with ultra-low memory symmetrically high-compressed look-up table
Yan Yang(杨燕), Jianying Zhu(朱建英), Minyuan Sun(孙敏远), and Yong Bi(毕勇). Chin. Phys. B, 2024, 33(4): 044201.
[2] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[3] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[4] (3+1)-dimensional localized self-accelerating Airy elegant Ince-Gaussian wave packets and their radiation forces in free space
Dongdong Li(李冬冬), Xi Peng(彭喜), Yulian Peng(彭玉莲), Liping Zhang(张丽萍), Xingyu Chen(陈星宇), Jingli Zhuang(庄经立), Fang Zhao(赵方), Xiangbo Yang(杨湘波), Dongmei Deng(邓冬梅). Chin. Phys. B, 2017, 26(12): 124202.
[5] Phase-only stereoscopic hologram calculation based on Gerchberg-Saxton iterative algorithm
Xinyi Xia(夏心怡), Jun Xia(夏军). Chin. Phys. B, 2016, 25(9): 094204.
[6] Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser
Ran Ling-Ling (冉玲苓), Guo Zhong-Yi (郭忠义), Qu Shi-Liang (曲士良). Chin. Phys. B, 2012, 21(10): 104206.
[7] Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses
Guo Zhong-Yi (郭忠义), Qu Shi-Liang (曲士良), Sun Zheng-He (孙正和), Liu Shu-Tian (刘树田). Chin. Phys. B, 2008, 17(11): 4199-4203.
No Suggested Reading articles found!