Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 118301    DOI: 10.1088/1674-1056/ad7726
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Relationship between polyhedral structures formed by tangent planes of ellipsoidal particles and system sound velocity

Cheng-Bo Li(李成波)1, Lin Bao(鲍琳)2, and Chuang Zhao(赵闯)2,†
1 School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, China;
2 College of Physics, Guizhou University, Guiyang 550025, China
Abstract  Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations. This technique has gained increasing recognition in research of kinetic properties of granular flows. For systems with mono-sized spherical particles, Voronoi tessellations can be utilized, while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles. However, research about polyhedral structures of non-spherical particle systems is limited. We utilize the discrete element method to simulate a system of ellipsoidal particles, defined by the equation $(\frac{x}{\alpha})^{2}+(\frac{y}{1})^{2}+(\frac{z}{1/\alpha})^{2}=1$, where $\alpha$ ranges from 1.1 to 2.0. The system is then dissected by using tangent planes at the contact points, and the geometric quantities of the resulting polyhedra in different shaped systems, such as surface area, volume, number of vertices, number of edges, and number of faces, are calculated. Meanwhile, the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method. The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra. The sound velocity of the system increases with the increase in $\alpha$, peaking at $\alpha=1.3$, and then decreases as $\alpha$ continues to increase. The average volume, surface area, number of vertices, number of edges, and number of faces of the polyhedra decrease with the increase in sound velocity. That is, these quantities initially decrease with the increase in $\alpha$, reaching minima at $\alpha=1.3$, and then increase with further increase of $\alpha$. The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.
Keywords:  discrete element method      Voronoi tessellation      polyhedral structure      sound velocity  
Received:  08 July 2024      Revised:  22 August 2024      Accepted manuscript online:  04 September 2024
PACS:  45.70.-n (Granular systems)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
  83.80.Fg (Granular solids)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12262005, 11962003, and 11602062), the Postgraduate Education Reform and Quality Improvement Project of Henan Province (Grant No. YJS2024AL138), and the Graduate Education Reform Project of Henan Province (Grant No. 2023SJGLX096Y).
Corresponding Authors:  Chuang Zhao     E-mail:  1508868030@qq.com

Cite this article: 

Cheng-Bo Li(李成波), Lin Bao(鲍琳), and Chuang Zhao(赵闯) Relationship between polyhedral structures formed by tangent planes of ellipsoidal particles and system sound velocity 2024 Chin. Phys. B 33 118301

[1] Lazar E A, Lu J and Rycroft C H 2022 Am. J. Phys. 90 469
[2] O’hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[3] Rycroft C H, Grest G S, Landry J W and Bazant M Z 2006 Phys. Rev. E 74 021306
[4] Suikkanen H, Ritvanen J, Jalali P and Kyrki-Rajamäki R 2014 Nucl. Eng. Des. 273 24
[5] Puckett J G, Lechenault F and Daniels K E 2011 Phys. Rev. E 83 041301
[6] Rycroft C H, Kamrin K and Bazant M Z 2009 J. Mech. Phys. Solids 57 828
[7] Panaitescu A and Kudrolli A 2014 Phys. Rev. E 90 032203
[8] Guo N and Zhao J 2014 Phys. Rev. E 89 042208
[9] Rieser J M, Goodrich C P, Liu A J and Durian D J 2016 Phys. Rev. Lett. 116 088001
[10] Richard P, Oger L, Troadec J P and Gervois A 2001 Eur. Phys. J. E 6 295
[11] Jowitt P W and Munro J 1975 The influence of void distribution and entropy on the engineering properties of granular media. In Proceedings: applications of statistics and probability in soil and structural engineering, 2nd international conference Schultze E (ed) (Essen, Germany: Deutsche Gesellschaft fur Erdund Grundbau) pp. 365-385
[12] Kang D H, Choo J and Yun T S 2013 Comput. Geotech. 49 53
[13] Kang D H, Yun T S and Evans T M 2014 Comput. Geotech. 59 1
[14] Kang D H, Yun T S and Evans T M 2014 Comput. Geotech. 59 1
[15] Askari R, Taheri S and Hejazi S H 2015 AIP Adv. 5 097106
[16] Luchnikov V A, Medvedev N N, Oger L and Troadec J P 1999 Phys. Rev. E 59 7205
[17] Baule A, Mari R, Bo L, Portal L and Makse H A 2013 Nat. Commun. 4 2194
[18] Schaller F M, Neudecker M, Saadatfar M, Delaney G W, Schröder-Turk G E and Schröter M 2015 Phys. Rev. Lett. 114 158001
[19] Dong K, Wang C and Yu A 2016 Chem. Eng. Sci. 153 330
[20] Sadd M H, Adhikari G and Cardoso 2000 Powder Technol. 109 222
[21] Lherminier S, Planet R, Simon G, Vanel L and Ramos O 2014 Phys. Rev. Lett. 113 098001
[22] Liu C H and Nagel S R 1992 Phys. Rev. Lett. 68 2301
[23] Chang C S and Gao J 1995 Int. J. Non-Linear Mech. 30 111
[24] Hostler S R and Brennen C E 2005 Phys. Rev. E 72 031303
[25] Shlivinski A and Langenberg K J 2007 Ultrasonics 46 89
[26] Khidas Y and Jia X 2012 Phys. Rev. E 85 051302
[27] Edwards A N, Viroulet S, Johnson C G and Gray J M N T 2021 J. Fluid Mech. 915 A9
[28] Tang X and Yang J 2021 J. Mech. Phys. Solids 157 104605
[29] Mirghasemi A A, Rothenburg L and Matyas E L 2002 Géotechnique 52 209
[30] Azéma E, Estrada N and Radjai F 2012 Phys. Rev. E 86 041301
[31] Wang S, Zhuravkov M and Ji S 2020 Soft Matter 16 7760
[32] Wang S and Ji S 2022 Comput. Methods Appl. Mech. Eng. 393 114802
[33] Podlozhnyuk A, Pirker S and Kloss C 2017 Comput. Part. Mech. 4 101
[34] Zhao C, Li C and Hu L 2018 Physica A 492 181
[35] Cheng X, Li C, Peng Y and Zhao C 2021 Granular Matter 23 1
[36] Luding S 2004 Int. J. Solids Struct. 41 5821
[37] Luding S 2008 Granular Matter 10 235
[38] Khidas Y and Jia X 2010 Phys. Rev. E 81 021303
[39] Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridg: Cambridge University Press) p. 18
[40] Zhao F and Van Wachem B G M 2013 Acta Mech. 224 3091
[41] Clayton C R I 2011 Géotechnique 61 5
[42] Cheng H, Luding S, Saitoh K and Magnanimo V 2020 Int. J. Solids Struct. 187 85
[43] Gao Q, Chen Y and Hu L 2023 Chin. Phys. B 32 064702
[44] Zhao C, Zhang X, Gao Q and Li C 2022 Powder Technol. 404 117460
[45] Donev A, Cisse I, Sachs D, Variano E, Stillinger F, Connelly R, Torquato S and Chaikin P 2004 Science 303 990
[46] Yang R Y, Zou R P and Yu A B 2002 Phys. Rev. E 65 041302
[47] Xu J Q, Zou R P and Yu A B 2007 Granular Matter 9 455
[48] Yi L Y, Dong K J, Zou R P and Yu A B 2015 Phys. Rev. E 92 032201
[1] Effect of particle shape on packing fraction and velocity profiles at outlet of a silo
Qing-Qing Gao(高庆庆), Yu-Chao Chen(陈玉超), and Lin Hu(胡林). Chin. Phys. B, 2023, 32(6): 064702.
[2] Role of grain boundary networks in vortex motion in superconducting films
Yu Liu(刘宇), Feng Xue(薛峰), and Xiao-Fan Gou(苟晓凡). Chin. Phys. B, 2023, 32(12): 127401.
[3] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[4] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[5] Criteria for Beverloo's scaling law
Sheng Zhang(张晟), Ping Lin(林平), Guanghui Yang(杨光辉), Jiang-Feng Wan(万江锋), Yuan Tian(田园), Lei Yang(杨磊). Chin. Phys. B, 2019, 28(1): 018101.
[6] Influence of particle packing structure on sound velocity
Chuang Zhao(赵闯), Cheng-Bo Li(李成波), Lin Bao(鲍琳). Chin. Phys. B, 2018, 27(10): 104501.
[7] A numerical study of contact force in competitive evacuation
Peng Lin(林鹏), Jian Ma(马剑), You-Ling Si(司有亮), Fan-Yu Wu(吴凡雨), Guo-Yuan Wang(王国元), Jian-Yu Wang(王建宇). Chin. Phys. B, 2017, 26(10): 104501.
[8] Discrete element crowd model for pedestrian evacuation through an exit
Peng Lin(林鹏), Jian Ma(马剑), Siuming Lo(卢兆明). Chin. Phys. B, 2016, 25(3): 034501.
[9] Relationships of the internodal distance of biological tissue with its sound velocity and attenuation at high frequency in doublet mechanics
Cheng Kai-Xuan (程凯旋), Wu Rong-Rong (吴融融), Liu Xiao-Zhou (刘晓宙), Liu Jie-Hui (刘杰惠), Gong Xiu-Fen (龚秀芬), Wu Jun-Ru (吴君汝). Chin. Phys. B, 2015, 24(4): 044302.
[10] The universal sound velocity formula for the strongly interacting unitary Fermi gas
Liu Ke(刘可) and Chen Ji-Sheng(陈继胜). Chin. Phys. B, 2011, 20(2): 020501.
[11] Simulation of random mixed packing of different density particles
Li Yuan-Yuan(李元元), Xia Wei(夏伟),Zhou Zhao-Yao(周照耀), He Ke-Jing(何克晶), Zhong Wen-Zhen(钟文镇), and Wu Yuan-Biao(吴苑标). Chin. Phys. B, 2010, 19(2): 024601.
[12] Bulk sound velocity of porous materials at high pressures
Geng Hua-Yun (耿华运), Wu Qiang (吴强), Tan Hua (谭华), Cai Ling-Cang (蔡灵仓), Jing Fu-Qian (经福谦). Chin. Phys. B, 2002, 11(11): 1188-1192.
No Suggested Reading articles found!