|
|
Continuous variable entanglement generation in coupled cavities |
Pan Gui-Xia (潘桂侠)a b, Xiao Rui-Jie (肖瑞杰)a, Zhou Ling (周玲)a |
a School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China; b School of Science, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Hamiltonian containing the square of creation (annihilation) operator of cavity field is derived. Due to the nonlinearity, entanglement formally created by the beam splitter type interaction is transformed into the nondegenerate parametric down conversion type. Employing the operator algebraic method, we study the time evolution of entanglement condition, and show that the system provides us advantage in achieving a larger photon number with better entanglement. We also discuss the dissipation of the cavities affecting the entanglement.
|
Received: 11 June 2012
Revised: 16 July 2012
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074028). |
Corresponding Authors:
Zhou Ling
E-mail: Zhlhxn@dlut.edu.cn
|
Cite this article:
Pan Gui-Xia (潘桂侠), Xiao Rui-Jie (肖瑞杰), Zhou Ling (周玲) Continuous variable entanglement generation in coupled cavities 2013 Chin. Phys. B 22 010307
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wooters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[3] |
Davidovich L, Brune M, Raimond J M and Haroche S 1996 Phys. Rev. A 53 1295
|
[4] |
Zheng, S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[5] |
Wang B and Duan L M 2005 Phys. Rev. A 72 022320
|
[6] |
He G, Zhu J and Zeng G 2006 Phys. Rev. A 73 012314
|
[7] |
Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321
|
[8] |
Zhang Y J, Ren T Q and Xia Y J 2008 Chin. Phys. 17 1972
|
[9] |
Zheng S B 2008 Chin. Phys. 17 2143
|
[10] |
Zhou L, Mu Q X and Liu Z J 2009 Phys. Lett. A 373 2017
|
[11] |
Mu Q X, Ma Y H and Zhou L 2010 Phys. Rev. A 81 024301
|
[12] |
Li X Y, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
|
[13] |
Zhang J, Xie C, Peng K and Loock P V 2008 Phys. Rev. A 77 022316
|
[14] |
Loock P V and Braunstein S 2001 Phys. Rev. Lett. 87 247901
|
[15] |
Yonezawa H, Aokl T and Furusawa A 2004 Nature 431 430
|
[16] |
Ma Y H, Zhao X Y and Zhou L 2009 Phys. Lett. A 373 2025
|
[17] |
Tan H T, Zhu S Y and Zubairy M S 2005 Phys. Rev. A 72 022305
|
[18] |
Adamyan H H and Kryuchkyan G Y 2004 Phys. Rev. A 69 053814
|
[19] |
Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
|
[20] |
Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
|
[21] |
Tan H T and Li G X 2011 Phys. Rev. A 84 024301
|
[22] |
Ikram M, Li G X and Zubairy M S 2007 Phys. Rev. A 76 042317
|
[23] |
Zhou L and Xiong H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025501
|
[24] |
Li G X, Wu S P and Huang G M 2005 Phys. Rev. A 71 063817
|
[25] |
Li G X, Yang Y P, Allaart K and Lenstra D 2004 Phys. Rev. A 69 014301
|
[26] |
Agarwal G S 1986 Phys. Rev. Lett. 57 827
|
[27] |
Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
|
[28] |
Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
|
[29] |
Simon C and Bouwmeester D 2003 Phys. Rev. Lett. 91 053601
|
[30] |
Zhang Y, Wang H, Li X, Jing J, Xie C and Peng K 2000 Phys. Rev. A 62 023813
|
[31] |
Zheng S B, Yang Z B and Xia Y 2010 Phys. Rev. A 81 015804
|
[32] |
Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302
|
[33] |
Song J, Sun X D, Xia Y and Song H S 2011 Phys. Rev. A 83 052309
|
[34] |
Yang Z B, Xia Y and Zheng S B 2010 Opt. Commun. 283 3052
|
[35] |
Yan W B, Liu Z J and Zhou L 2011 Opt. Commun. 284 2250
|
[36] |
Tan H T, Zhang W M and Li G X 2011 Phys. Rev. A 83 062310
|
[37] |
Mckeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
|
[38] |
Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 022323
|
[39] |
Lu H X, Yang J, Zhang Y D and Chen Z B 2003 Phys. Rev. A 67 024101
|
[40] |
Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
|
[41] |
Mu Q X, Ma Y H, Zhou L 2009 J. Phys. A 42 225304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|