Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057801    DOI: 10.1088/1674-1056/ad3629
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Design and implementation of the monochromator shielding for the cold neutron spectrometers XINGZHI and BOYA

Jinchen Wang(汪晋辰)1,†, Juanjuan Liu(刘娟娟)1,†, Daye Xu(徐大业)1, Florian Grünauer2, Lijie Hao(郝丽杰)3, Yuntao Liu(刘蕴韬)3, Hongxia Zhang(张红霞)1,‡, Peng Cheng(程鹏)1,§, and Wei Bao(鲍威)1,4,5,¶
1 Laboratory for Neutron Scattering and Beijing Key Laboratory of Optoelectronic Functional Materials and MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China;
2 Physics Consulting, Zorneding 85604, Germany;
3 China Institute of Atomic Energy, Beijing 102413, China;
4 Department of Physics, City University of Hong Kong, Kowloon 999077, China;
5 Center for Neutron Scattering, City University of Hong Kong, Kowloon 999077, China
Abstract  An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor. Via Monte Carlo simulations and careful mechanical designs, a shielding configuration has been successfully developed to satisfy safety requirements of below 3 μSv/h dose rate at its exterior, meanwhile fulfilling space, floor load and nonmagnetic requirements. Composite materials are utilized to form the sandwich-type shielding walls: the inner layer of boron carbide rubber, the middle layer of steel-encased lead and the outer layer of borated polyethylene. Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage. Our work has demonstrated that by utilizing composite shielding materials, along with the sandwich structure and liftable shielding blocks, a compact and lightweight shielding solution can be achieved. This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement, larger energy and momentum coverage, and higher flux on the sample. This shielding represents the first of its kind in neutron scattering instruments in China. Following its successful operation, it has been subsequently employed by other neutron instruments across the country.
Keywords:  neutron scattering      cold neutron spectrometer      monochromator shielding      sandwich shielding structure  
Received:  27 December 2023      Revised:  16 February 2024      Accepted manuscript online:  21 March 2024
PACS:  78.70.Nx (Neutron inelastic scattering)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  29.30.Hs (Neutron spectroscopy)  
  28.20.-v (Neutron physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004426, U2030106, and 12304185), the National Key Scientific Instrument and Equipment Development Project of NSFC (Grant No. 11227906), and the National Key R&D Program of China (Grant No. 2023YFA1406500).
Corresponding Authors:  Hongxia Zhang, Peng Cheng, Wei Bao     E-mail:  hxzhang@ruc.edu.cn;pcheng@ruc.edu.cn;weibao@cityu.edu.hk

Cite this article: 

Jinchen Wang(汪晋辰), Juanjuan Liu(刘娟娟), Daye Xu(徐大业), Florian Grünauer, Lijie Hao(郝丽杰), Yuntao Liu(刘蕴韬), Hongxia Zhang(张红霞), Peng Cheng(程鹏), and Wei Bao(鲍威) Design and implementation of the monochromator shielding for the cold neutron spectrometers XINGZHI and BOYA 2024 Chin. Phys. B 33 057801

[1] Shirane G, Shapiro S M and Tranquada J M 2002 Neutron Scattering With a Triple-Axis Spectrometer Basic Techniques (Cambridge: Cambridge University Press)
[2] Gao J, Li J, Li J, Liu Y and Chen D 2010 China J. Mech. Eng. 21 275
[3] Liang T R, Shen F, Yin W, Yu Q Z, Yu C X, Tao J Z and Liang T J 2014 Chin. Phys. C 38 078202
[4] Shen F, Liang T R, Yin W, Yu Q Z, Zuo T S, Yao Z E, Zhu T and Liang T J 2014 Acta Phys. Sin. 63 152801 (in Chinese)
[5] Pyka N, Noack K and Rogov A 2002 Appl. Phys. A 74 s277
[6] Danilkin S, Horton G, Moore R, Braoudakis G and Hagen M 2007 J. Neutron Res. 15 55
[7] Yılmaz E, Baltas H, Kırıs E, Ustabas · I, Cevik U and El-Khayatt A 2011 Ann. Nucl. Energy 38 2204
[8] Georgii R, Weber T, Brandl G, Skoulatos M, Janoschek M, Mühlbauer S, Pfleiderer C and Böni P 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 881 60
[9] Skoulatos M and Habicht K 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 647 100
[10] Grünauer F, Keller T, Georgii R, Hertwig M and Skoulatos M 2023 Nucl. Instrum. Methods Phys. Res. Sect. A 1047 167854
[11] Schmalzl K, Schmidt W, Raymond S, Feilbach H, Mounier C, Vettard B and Brückel T 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 819 89
[12] Cheng P, Zhang H, Bao W, Schneidewind A, Link P, Grunwald A, Georgii R, Hao L and Liu Y 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 821 17
[13] Chen D, Liu Y, Gou C and Ye C 2006 Physica B 385 966
[14] Wang B, Zhong S, Lin H, Li J, Yang Z, Goukassov A, Zhang H and Sun G 2023 J. Appl. Crystallogr. 56 1485
[15] Josey C J and Sood A 2023 A Review of 70 Years of Monte Carlo Development at Los Alamos: 1953-2023
[16] ICRP 1996 ICRP Publication 74. Ann. ICRP 26
[1] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[2] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[3] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[4] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[5] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[6] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
[7] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[8] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[9] Dynamic behaviors of water contained in calcium—silicate—hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy
Zhou Yi(易洲), Pei-Na Deng(邓沛娜), Li-Li Zhang(张丽丽), Hua Li(李华). Chin. Phys. B, 2016, 25(10): 106401.
[10] Vibrational analysis of L-serine using the density functional theory
Zhang Ying (张英), Yin Wen (殷雯), Zhang Peng (张鹏), Xu Chang-Ye (徐昌业), Han Sheng-Hao (韩圣浩), Li Ji-Chen (李济晨). Chin. Phys. B, 2005, 14(12): 2585-2589.
[11] Vibration properties of low-fraction hydrogen in deuterium ices
Wang Yan (王燕), Dong Shun-Le (董顺乐). Chin. Phys. B, 2005, 14(10): 1942-1945.
[12] NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (I)
Dong Shun-le (董顺乐), Wang Yan (王燕), Li Qi (李琪). Chin. Phys. B, 2001, 10(10): 951-957.
[13] NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (II)
Dong Shun-le (董顺乐), Wang Yan (王燕). Chin. Phys. B, 2001, 10(10): 958-965.
No Suggested Reading articles found!