|
|
Coherent optical frequency transfer via 972-km fiber link |
Xue Deng(邓雪)1,2,3, Xiang Zhang(张翔)1,2, Qi Zang(臧琦)1,2, Dong-Dong Jiao(焦东东)1,2, Dan Wang(王丹)1,2, Jie Liu(刘杰)1,2, Jing Gao(高静)1,2, Guan-Jun Xu (许冠军)1,2,†, Rui-Fang Dong(董瑞芳)1,2,‡, Tao Liu(刘涛)1,2,§, and Shou-Gang Zhang(张首刚)1,2 |
1 National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600, China; 2 Key Laboratory of Time Reference and Application, Chinese Academy of Sciences, Xi'an 710600, China; 3 School of Communications and Information Engineering and School of Artificial Intelligence, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for. Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme, the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site. This passive scheme exhibits fine robustness and reliability, making it suitable for long-distance and noisy fiber links. An optical regeneration station is used in the link for signal amplification and cascaded transmission. The phase noise cancellation and transfer instability of the 972-km link is investigated, and transfer instability of 1.1×10-19 at 104 s is achieved. This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
|
Received: 11 September 2023
Revised: 11 October 2023
Accepted manuscript online: 24 October 2023
|
PACS:
|
06.30.Ft
|
(Time and frequency)
|
|
42.81.-i
|
(Fiber optics)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12103059, 12033007, 12303077, and 12303076), the Fund from the Xi’an Science and Technology Bureau, China (Grant No. E019XK1S04), and the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 1188000XGJ). |
Corresponding Authors:
Guan-Jun Xu, Rui-Fang Dong, Tao Liu
E-mail: xuguanjun@ntsc.ac.cn;dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
|
Cite this article:
Xue Deng(邓雪), Xiang Zhang(张翔), Qi Zang(臧琦), Dong-Dong Jiao(焦东东), Dan Wang(王丹), Jie Liu(刘杰), Jing Gao(高静), Guan-Jun Xu (许冠军), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), and Shou-Gang Zhang(张首刚) Coherent optical frequency transfer via 972-km fiber link 2024 Chin. Phys. B 33 020602
|
[1] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N and Ye J 2018 Phys. Rev. Lett. 120 103201 [2] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90 [3] Van T K, Leefer N, Bougas L and Budker D 2015 Phys. Rev. Lett. 115 011802 [4] Stadnik Y V and Flambaum V V 2016 Phys. Rev. A 93 063630 [5] Delva P, Lodewyck J, Bilicki S, et al. 2017 Phys. Rev. Lett. 118 221102 [6] Raupach S M F, Koczwara A and Grosche G 2015 Phys. Rev. A 92 021801 [7] Chiodo N, Quintin N, Stefani F, Wiotte F, Camisard E, Chardonnet C, Santarelli G, Amy K A, Pottie P E and Lopez O 2015 Opt. Express 23 33927 [8] Koke S, Kuhl A, Waterholter T, Raupach S M F, Lopez O, Cantin E, Quintin N, Amy K A, Pottie P E and Grosche G 2019 New J. Phys. 21 123017 [9] Lisdat C, Grosche G, Quintin N, et al. 2016 Nat. Commun. 7 12443 [10] Roberts B M, Delva P, Al M A, et al. 2020 New J. Phys. 22 093010 [11] Schioppo M, Kronjager J, Silva A, et al. 2022 Nat. Commun. 13 212 [12] Newbury N R, Williams P A and Swann W C 2007 Opt. Lett. 32 3056 [13] Ma L S, Jungner P, Ye J and Hall J L 1994 Opt. Lett. 19 1777 [14] Droste S, Ozimek F, Udem T, Predehl K, Hansch T W, Schnatz H, Grosche G and Holzwarth R 2013 Phys. Rev. Lett. 111 110801 [15] Lopez O, Haboucha A, Kéfélian F, Jiang H and Santarelli G 2010 Opt. Express 18 16849 [16] Terra O, Grosche G and Schnatz H 2010 Opt. Express 18 16102 [17] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T and Zhang S G 2016 Chin. Phys. Lett. 33 114202 [18] Hu L, Xue R, Tian X, Wu G and Chen J 2021 Opt. Lett. 46 1381 [19] Zhang X, Hu L, Deng X, Zang Q, Jiao D D, Gao J, Wang D, Zhou Q, Liu J, Xu G J, Liu T, Dong R F and Zhang S G 2023 Opt. Laser Technol. 157 108738 [20] Zhang X, Deng X, Zang Q, Jiao D D, Gao J, Wang D, Zhou Q, Liu J, Xu G J, Dong R F, Liu T and Zhang S G 2022 Chin. Phys. Lett. 39 044201 [21] Williams P A and Swann W C and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284 [22] Deng X, Jiao D D, Liu J, Zang Q, Zhang X, Wang D, Gao J, Dong R F, Liu T and Zhang S G 2020 Chin. Phys. B 29 054205 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|