Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084701    DOI: 10.1088/1674-1056/23/8/084701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Heat transfer analysis in the flow of Walters’B fluid with a convective boundary condition

T. Hayata b, Sadia Asada, M. Mustafac, Hamed H. Alsulamib
a Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan;
b Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
c School of Natural Sciences, National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
Abstract  Radiative heat transfer in the steady two-dimensional flow of Walters' B fluid with a non-uniform heat source/sink is investigated. An incompressible fluid is bounded by a stretching porous surface. The convective boundary condition is used for the thermal boundary layer problem. The relevant equations are first simplified under usual boundary layer assumptions and then transformed into a similar form by suitable transformations. Explicit series solutions of velocity and temperature are derived by the homotopy analysis method (HAM). The dimensionless velocity and temperature gradients at the wall are calculated and discussed.
Keywords:  Walters’B fluid      heat source/sink      convective boundary condition      analytic solution  
Received:  10 October 2013      Revised:  16 December 2013      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Projects supported (for Alsulami) by Deanship of 13 Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia.
Corresponding Authors:  Sadia Asad     E-mail:  asadsadia@ymail.com

Cite this article: 

T. Hayat, Sadia Asad, M. Mustafa, Hamed H. Alsulami Heat transfer analysis in the flow of Walters’B fluid with a convective boundary condition 2014 Chin. Phys. B 23 084701

[1] Beard W D and Walters K 1964 Proc. Camb. Philos. Soc. 60 667
[2] Soundalgekar M V 1978 Czechoslovak J. Phys. B 28 1217
[3] Samria K N, Reddy S U M and Prasad R 1990 Astrophys. Space Sci. 172 231
[4] Rajagopal K R, Na T Y and Gupta A S 1984 Rheo. Acta 23 213
[5] Labropulu F, Hussain I and Chinichian M 2004 Int. J. Math. Sci. 2004 3249
[6] Khan K S and Sanjayanand E 2005 Int. J. Heat Mass Transfer 48 1534
[7] Cortell R 2007 Chem. Eng. Process. 46 982
[8] Abel S M, Sanjayanand E and Nandeppanavar M M 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1808
[9] Hayat T, Sajid M and Pop I 2008 Nonlinear Analysis: RWA 9 1811
[10] Hayat T, Mustafa M and Sajid M 2011 Numer. Meth. Part. Diff. Eq. 27 915
[11] Fakhar K, Xu Z L and Cheng Y 2007 Chin. Phys. Lett. 24 1129
[12] Hayat T, Mustafa S and Obaidat M 2011 Chin. Phys. Lett. 28 074702
[13] Ali N, Sajid M, Javad T and Abbas Z 2011 Chin. Phys. Lett. 28 014704
[14] Hayat T, Abbasi F M and Hendi A A 2011 Chin. Phys. Lett. 28 044701
[15] Hayat T, Saleem N and Hendi A A 2011 Chin. Phys. Lett. 28 034702
[16] Yuan M J, Yu B M, Zhang W and Yuan J 2011 Acta Phys. Sin. 60 024703 (in Chinese)
[17] Sajid M, Mahmood K and Abbas Z 2012 Chin. Phys. Lett. 29 024702
[18] Bhattacharyya K, Hayat T and Alsaedi A 2013 Chin. Phys. B 22 024702
[19] Aziz A 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1064
[20] Magyari E 2011 Commun. Nonlinear Sci. Numer. Simul. 16 599
[21] Hayat T, Shehzad S A, Alsaedi A and Alhothuali S M 2012 Chin. Phys. Lett. 29 114704
[22] Ishak A 2010 Appl. Math. Comput. 217 837
[23] Yao S, Fang T and Zhong Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 752
[24] Hayat T, Asad S, Qasim M and Hendi A A 2012 Int. J. Numer. Meth. Fluids 69 1350
[25] Hayat T, Shehzad A S, Qasim M and Obaidat S 2011 Therm. Sci. 15 253
[26] Mustafa M, Hayat T and Alsaedi A 2012 Curr. Nanosci. 8 328
[27] Wang J F and Cheng Y M 2012 Chin. Phys. B 21 120206
[28] Chen L, Ma H P and Cheng Y M 2013 Chin. Phys. B 22 050202
[29] Zhang Z, Wang J F, Cheng Y M and Liew K M 2013 Sci. China: Phys. Mech. Astron. 56 1568
[30] Liao J S 2009 Commun. Nonlinear Sci. Numer. Simul. 14 983
[31] Nadeem S and Faraz N 2010 Chin. Phys. Lett. 27 034704
[32] Abbasbandy S 2008 Z. Angew. Math. Phys. 59 51
[33] Rashidi M M and Pour M A S 2010 Nonlinear Analysis: Modelling and Control 15 83
[34] Rashidi M M, Hayat T, Erfani Pour M E S A and Hendi A A 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4303
[35] Hayat T and Qasim M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2375
[36] Hayat T, Mustafa M and Obaidat S 2011 Chin. Phys. Lett. 28 074702
[37] Hayat T, Mustafa M and Asghar S 2010 Nonlinear Analysis: RWA 11 3186
[38] Hayat T, Naz R and Sajid M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 581
[39] Akbar S N and Nadeem S 2013 Chin. Phys. Lett. 27 034704
[1] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[2] Nonlinear tunneling through a strong rectangular barrier
Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东). Chin. Phys. B, 2015, 24(7): 070311.
[3] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[4] Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer
Krishnendu Bhattacharyya, Tasawar Hayat, Ahmed Alsaedi. Chin. Phys. B, 2013, 22(2): 024702.
[5] Approximate analytic solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled mKdV equation
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江), Wu Di (吴迪). Chin. Phys. B, 2010, 19(8): 080204.
[6] Variational iteration method for solving compressible Euler equations
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江). Chin. Phys. B, 2010, 19(7): 070203.
[7] New approximate solution for time-fractional coupled KdV equations by generalised differential transform method
Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林). Chin. Phys. B, 2010, 19(11): 110203.
[8] Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field
Ni Gu-Yan(倪谷炎), Yan Li(颜力), and Yuan Nai-Chang(袁乃昌). Chin. Phys. B, 2008, 17(10): 3629-3634.
No Suggested Reading articles found!