Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 083101    DOI: 10.1088/1674-1056/21/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method

Shao Yu-Fei (邵宇飞)a, Yang Xin (杨鑫)a, Zhao Xing (赵星)b, Wang Shao-Qing (王绍青 )c
a Institute of Applied Physics and Technology, Department of General Studies, Liaoning Technical University, Huludao 125105, China;
b Department of Mathematics and Physics, Liaoning University of Technology, Jinzhou 121001, China;
c Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  Activities of grain boundaries in nanocrystalline Al under an indenter are studied by a multiscale method. It is found that grain boundaries and twin boundaries can be transformed into each other by emitting and absorbing dislocations. The transition processes might result in grain coarsening and refinement events. Dislocation reflection generated by a piece of stable grain boundary is also observed, because of the complex local atomic structure within the nanocrystalline Al. This implies that nanocrystalline metals might improve their internal structural stability with the help of some special local grain boundaries.
Keywords:  multiscale simulation      nanocrystalline materials      grain boundaries      dislocations  
Received:  26 December 2011      Revised:  12 March 2012      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  61.72.Mm (Grain and twin boundaries)  
  61.82.Rx (Nanocrystalline materials)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606403).
Corresponding Authors:  Shao Yu-Fei, Zhao Xing     E-mail:  yfshao@alum.imr.ac.cn; zhao-heng-xing@126.com

Cite this article: 

Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青 ) Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method 2012 Chin. Phys. B 21 083101

[1] Kumar K S, Swygenhoven H V and Suresh S 2003 Acta Mater. 51 5743
[2] Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51 427
[3] Dao M, Lu L, Asaro R J, De Hosson J T M and Ma E 2007 Acta Mater. 55 4041
[4] Ma W, Zhu W J, Zhang Y L and Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese)
[5] Jin M, Minor A M, Stach E A and Morris J W Jr 2004 Acta Mater. 52 5381
[6] Zhang K, Weertman J R and Eastman J A 2005 Appl. Phys. Lett. 87 061921
[7] Minor A M, Syed Asif S A, Shan Z W, Stach E A, Cyrankowski E, Wyrobek T J and Warren O L 2006 Nat. Mater. 5 697
[8] Yang B and Vehoff H 2007 Acta Mater. 55 849
[9] Lilleodden E T, Zimmerman J A, Foiles S M and Nix W D 2003 J. Mech. Phys. Solids 51 901
[10] Vliet K J V, Li J, Zhu T, Yip S and Suresh S 2003 Phys. Rev. B 67 104105
[11] Tsuru T and Shibutani Y 2007 Phys. Rev. B 75 035415
[12] Shao C W, Wang Z H, Li Y N, Zhao Q and Zhang L 2011 Acta Phys. Sin. 60 083602 (in Chinese)
[13] Song C F, Fan Q N, Li W, Liu Y L and Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese)
[14] Wang Z G, Wu L, Zhang Y and Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese)
[15] Tadmor E B, Ortiz M and Phillips R 1996 Philos. Mag. A 73 1529
[16] Tadmor E B, Phillips R and Ortiz M 1996 Langmuir 12 4529
[17] Tadmor E B, Miller R and Phillips R 1999 J. Mater. Res. 14 2233
[18] Smith G S, Tadmor E B, Bernstein N and Kaxiras E 2001 Acta Mater. 49 4089
[19] Sansoz F and Dupont V 2006 Appl. Phys. Lett. 89 111901
[20] Dupont V and Sansoz F 2008 Acta Mater. 56 6013
[21] Wang H T, Qin Z D, Ni Y S and Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese)
[22] Li J W, Mei J F, Ni Y S, Lu H B and Jiang W G 2010 J. Appl. Phys. 108 054309
[23] Shao Y F and Wang S Q 2010 Acta Phys. Sin. 59 7258 (in Chinese)
[24] Lu H B, Li J W, Ni Y S, Mei J F and Wang H S 2011 Acta Phys. Sin. 60 106101 (in Chinese)
[25] Mei J F, Li J W, Ni Y S and Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese)
[26] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[27] Miller R E and Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203
[28] Voronoi G Z 1908 J. Reine Angew. Math. 134 199
[29] Kelchner C L, Plimpton S J and Hamilton J C 1998 Phys. Rev. B 58 11085
[30] Voter A F and Chen S P 1987 Mater. Res. Soc. Symp. Proc. 82 175
[31] Cormier J, Rickman J M and Delph T J 2001 J. Appl. Phys. 89 99
[32] Shao Y F and Wang S Q 2010 J. Mater. Sci. Tech. 26 56
[33] Li J 2003 Modelling Simul. Mater. Sci. Eng. 11 173
[34] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[35] Wu X L and Ma E 2006 Appl. Phys. Lett. 88 231911
[36] Wu X L and Zhu Y T 2006 Appl. Phys. Lett. 89 031922
[37] Shan Z W, Wiezorek J M K, Stach E A, Follstaedt D M, Knapp J A and Mao S X 2007 Phys. Rev. Lett. 98 095502
[38] Swygenhoven H V, Derlet P M and Froseth A G 2006 Acta Mater. 54 1975
[39] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H 2002 Nature Mat. 1 45
[40] Merkle K 1995 Interface Science Vol. 2 (Boston: Kluwer Academic Publishers) pp. 311-345
[41] Brown J A and Mishin Y 2007 Phys. Rev. B 76 134118
[42] Shao Y F and Wang S Q 2010 Scripta Mater. 62 419
[43] Zhu Y T, Liao X Z and Wu X L 2012 Prog. Mater. Sci. 57 1
[44] Shen Y F, Lu L, Dao M and Suresh S 2006 Scripta Mater. 55 319
[45] Wu X L and Zhu Y T 2008 Phys. Rev. Lett. 101 025503
[46] Wang Y M, Chen M W, Zhou F H and Ma E 2002 Nature 419 912
[47] Farkas D, Froseth A and Swygenhoven H V 2006 Scripta Mater. 55 695
[48] Gianola D S, Petegem S V, Legros M, Brandstetter S, Swygenhoven H V and Hemker K J 2006 Acta Mater. 54 2253
[49] Legros M, Gianola D S and Hemker K J 2008 Acta Mater. 56 3380
[50] Ivanov V A and Mishin Y 2008 Phys. Rev. B 78 064106
[51] Cahn J W, Mishin Y and Suzuki A 2006 Acta Mater. 54 4953
[52] Cahn J W and Taylor J E 2004 Acta Mater. 52 4887
[53] Wang Y B, Sui M L and Ma E 2007 Phil. Mag. Lett. 87 935
[54] Cao A J and Wei Y G 2006 Appl. Phys. Lett. 89 041919
[55] Hasnaoui A, Derlet P M and Swygenhoven H V 2004 Acta Mater. 52 2251
[1] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[2] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[3] Interaction between many parallel screw dislocations and a semi-infinite crack in a magnetoelectroelastic solid
Xin Lv(吕鑫), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2018, 27(7): 074601.
[4] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[5] On the reverse leakage current of Schottky contacts on free-standing GaN at high reverse biases
Yong Lei(雷勇), Jing Su(苏静), Hong-Yan Wu(吴红艳), Cui-Hong Yang(杨翠红), Wei-Feng Rao(饶伟锋). Chin. Phys. B, 2017, 26(2): 027105.
[6] Temperature dependence of migration features of self-interstitials in zirconium
Rui Zhong(钟睿), Qing Hou(侯氢), Chao-Qiong Ma(马超琼), Bao-Qin Fu(付宝勤), Jun Wang(汪俊). Chin. Phys. B, 2017, 26(12): 120202.
[7] Orientation-dependent morphological stability of grain boundary groove
Wang Li-Lin (王理林), Lin Xin (林鑫), Wang Zhi-Jun (王志军), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(12): 124702.
[8] A new modulated structure in α-Fe2O3 nanowires
Cai Rong-Sheng (蔡鎔声), Shang Lei (商蕾), Liu Xue-Hua (刘雪华), Wang Yi-Qian (王乙潜), Yuan Lu (袁露), Zhou Guang-Wen (周光文). Chin. Phys. B, 2013, 22(10): 107401.
[9] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青). Chin. Phys. B, 2012, 21(9): 093104.
[10] The synthesis and exchange bias effect of monodisperse NiO nanocrystals
Duan Han-Ning(段寒凝), Yuan Song-Liu(袁松柳), Zheng Xian-Feng(郑先锋), and Tian Zhao-Ming(田召明) . Chin. Phys. B, 2012, 21(7): 078101.
[11] Influence of double AlN buffer layers on the qualities of GaN films prepared by metal–organic chemical vapour deposition
Lin Zhi-Yu (林志宇), Zhang Jin-Cheng (张进成), Zhou Hao (周昊), Li Xiao-Gang (李小刚), Meng Fan-Na (孟凡娜), Zhang Lin-Xia (张琳霞), Ai Shan (艾姗), Xu Sheng-Rui (许晟瑞), Zhao Yi (赵一), Hao Yue (郝跃). Chin. Phys. B, 2012, 21(12): 126804.
[12] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
Chen Cheng (陈成), Chen Zheng (陈铮), Zhang Jing (张静), Yang Tao (杨涛), Du Xiu-Juan (杜秀娟 ). Chin. Phys. B, 2012, 21(11): 118103.
[13] Investigation of dislocations in 8$^\circ$ off-axis 4H-SiC epilayer
Miao Rui-Xia (苗瑞霞), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Tang Xiao-Yan (汤晓燕), Gai Qing-Feng (盖庆丰). Chin. Phys. B, 2010, 19(7): 076106.
[14] Structural and electrical properties of single crystalline and bi-crystalline ZnO thin films grown by molecular beam epitaxy
Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang(徐明祥), and Zhang Feng-Ming(张凤鸣). Chin. Phys. B, 2010, 19(7): 076101.
[15] Grain size reduction of copper subjected to repetitive uniaxial compression combined with accumulative fold
Zou Yong-Tao(邹永涛), Lei Li(雷力), Wang Zhao(王赵), Wang Jiang-Hua(王江华), Zhang Wei(张伟), and He Duan-Wei(贺端威). Chin. Phys. B, 2009, 18(2): 815-820.
No Suggested Reading articles found!