|
|
Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method |
Shao Yu-Fei (邵宇飞)a, Yang Xin (杨鑫)a, Zhao Xing (赵星)b, Wang Shao-Qing (王绍青 )c |
a Institute of Applied Physics and Technology, Department of General Studies, Liaoning Technical University, Huludao 125105, China; b Department of Mathematics and Physics, Liaoning University of Technology, Jinzhou 121001, China; c Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract Activities of grain boundaries in nanocrystalline Al under an indenter are studied by a multiscale method. It is found that grain boundaries and twin boundaries can be transformed into each other by emitting and absorbing dislocations. The transition processes might result in grain coarsening and refinement events. Dislocation reflection generated by a piece of stable grain boundary is also observed, because of the complex local atomic structure within the nanocrystalline Al. This implies that nanocrystalline metals might improve their internal structural stability with the help of some special local grain boundaries.
|
Received: 26 December 2011
Revised: 12 March 2012
Accepted manuscript online:
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
61.82.Rx
|
(Nanocrystalline materials)
|
|
61.72.Lk
|
(Linear defects: dislocations, disclinations)
|
|
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606403). |
Corresponding Authors:
Shao Yu-Fei, Zhao Xing
E-mail: yfshao@alum.imr.ac.cn; zhao-heng-xing@126.com
|
Cite this article:
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青 ) Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method 2012 Chin. Phys. B 21 083101
|
[1] |
Kumar K S, Swygenhoven H V and Suresh S 2003 Acta Mater. 51 5743
|
[2] |
Meyers M A, Mishra A and Benson D J 2006 Prog. Mater. Sci. 51 427
|
[3] |
Dao M, Lu L, Asaro R J, De Hosson J T M and Ma E 2007 Acta Mater. 55 4041
|
[4] |
Ma W, Zhu W J, Zhang Y L and Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese)
|
[5] |
Jin M, Minor A M, Stach E A and Morris J W Jr 2004 Acta Mater. 52 5381
|
[6] |
Zhang K, Weertman J R and Eastman J A 2005 Appl. Phys. Lett. 87 061921
|
[7] |
Minor A M, Syed Asif S A, Shan Z W, Stach E A, Cyrankowski E, Wyrobek T J and Warren O L 2006 Nat. Mater. 5 697
|
[8] |
Yang B and Vehoff H 2007 Acta Mater. 55 849
|
[9] |
Lilleodden E T, Zimmerman J A, Foiles S M and Nix W D 2003 J. Mech. Phys. Solids 51 901
|
[10] |
Vliet K J V, Li J, Zhu T, Yip S and Suresh S 2003 Phys. Rev. B 67 104105
|
[11] |
Tsuru T and Shibutani Y 2007 Phys. Rev. B 75 035415
|
[12] |
Shao C W, Wang Z H, Li Y N, Zhao Q and Zhang L 2011 Acta Phys. Sin. 60 083602 (in Chinese)
|
[13] |
Song C F, Fan Q N, Li W, Liu Y L and Zhang L 2011 Acta Phys. Sin. 60 063104 (in Chinese)
|
[14] |
Wang Z G, Wu L, Zhang Y and Wen Y H 2011 Acta Phys. Sin. 60 096105 (in Chinese)
|
[15] |
Tadmor E B, Ortiz M and Phillips R 1996 Philos. Mag. A 73 1529
|
[16] |
Tadmor E B, Phillips R and Ortiz M 1996 Langmuir 12 4529
|
[17] |
Tadmor E B, Miller R and Phillips R 1999 J. Mater. Res. 14 2233
|
[18] |
Smith G S, Tadmor E B, Bernstein N and Kaxiras E 2001 Acta Mater. 49 4089
|
[19] |
Sansoz F and Dupont V 2006 Appl. Phys. Lett. 89 111901
|
[20] |
Dupont V and Sansoz F 2008 Acta Mater. 56 6013
|
[21] |
Wang H T, Qin Z D, Ni Y S and Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese)
|
[22] |
Li J W, Mei J F, Ni Y S, Lu H B and Jiang W G 2010 J. Appl. Phys. 108 054309
|
[23] |
Shao Y F and Wang S Q 2010 Acta Phys. Sin. 59 7258 (in Chinese)
|
[24] |
Lu H B, Li J W, Ni Y S, Mei J F and Wang H S 2011 Acta Phys. Sin. 60 106101 (in Chinese)
|
[25] |
Mei J F, Li J W, Ni Y S and Wang H T 2011 Acta Phys. Sin. 60 066104 (in Chinese)
|
[26] |
Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
|
[27] |
Miller R E and Tadmor E B 2002 J. Computer-Aided Mater. Design 9 203
|
[28] |
Voronoi G Z 1908 J. Reine Angew. Math. 134 199
|
[29] |
Kelchner C L, Plimpton S J and Hamilton J C 1998 Phys. Rev. B 58 11085
|
[30] |
Voter A F and Chen S P 1987 Mater. Res. Soc. Symp. Proc. 82 175
|
[31] |
Cormier J, Rickman J M and Delph T J 2001 J. Appl. Phys. 89 99
|
[32] |
Shao Y F and Wang S Q 2010 J. Mater. Sci. Tech. 26 56
|
[33] |
Li J 2003 Modelling Simul. Mater. Sci. Eng. 11 173
|
[34] |
Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
|
[35] |
Wu X L and Ma E 2006 Appl. Phys. Lett. 88 231911
|
[36] |
Wu X L and Zhu Y T 2006 Appl. Phys. Lett. 89 031922
|
[37] |
Shan Z W, Wiezorek J M K, Stach E A, Follstaedt D M, Knapp J A and Mao S X 2007 Phys. Rev. Lett. 98 095502
|
[38] |
Swygenhoven H V, Derlet P M and Froseth A G 2006 Acta Mater. 54 1975
|
[39] |
Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H 2002 Nature Mat. 1 45
|
[40] |
Merkle K 1995 Interface Science Vol. 2 (Boston: Kluwer Academic Publishers) pp. 311-345
|
[41] |
Brown J A and Mishin Y 2007 Phys. Rev. B 76 134118
|
[42] |
Shao Y F and Wang S Q 2010 Scripta Mater. 62 419
|
[43] |
Zhu Y T, Liao X Z and Wu X L 2012 Prog. Mater. Sci. 57 1
|
[44] |
Shen Y F, Lu L, Dao M and Suresh S 2006 Scripta Mater. 55 319
|
[45] |
Wu X L and Zhu Y T 2008 Phys. Rev. Lett. 101 025503
|
[46] |
Wang Y M, Chen M W, Zhou F H and Ma E 2002 Nature 419 912
|
[47] |
Farkas D, Froseth A and Swygenhoven H V 2006 Scripta Mater. 55 695
|
[48] |
Gianola D S, Petegem S V, Legros M, Brandstetter S, Swygenhoven H V and Hemker K J 2006 Acta Mater. 54 2253
|
[49] |
Legros M, Gianola D S and Hemker K J 2008 Acta Mater. 56 3380
|
[50] |
Ivanov V A and Mishin Y 2008 Phys. Rev. B 78 064106
|
[51] |
Cahn J W, Mishin Y and Suzuki A 2006 Acta Mater. 54 4953
|
[52] |
Cahn J W and Taylor J E 2004 Acta Mater. 52 4887
|
[53] |
Wang Y B, Sui M L and Ma E 2007 Phil. Mag. Lett. 87 935
|
[54] |
Cao A J and Wei Y G 2006 Appl. Phys. Lett. 89 041919
|
[55] |
Hasnaoui A, Derlet P M and Swygenhoven H V 2004 Acta Mater. 52 2251
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|