INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Logical stochastic resonance in a cross-bifurcation non-smooth system |
Yuqing Zhang(张宇青)1 and Youming Lei(雷佑铭)1,2,† |
1 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China; 2 Ministry of Industry and Information Technology Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract This paper investigates logical stochastic resonance (LSR) in a cross-bifurcation non-smooth system driven by Gaussian colored noise. In this system, a bifurcation parameter triggers a transition between monostability, bistability and tristability. By using Novikov's theorem and the unified colored noise approximation method, the approximate Fokker-Planck equation is obtained. Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations. We simulate the logic operation of the system in the bistable and tristable regions respectively. We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter. Furthermore, it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region, since the tristable region is more sensitive to noise than the bistable one.
|
Received: 09 June 2023
Revised: 08 August 2023
Accepted manuscript online: 17 August 2023
|
PACS:
|
82.40.Bj
|
(Oscillations, chaos, and bifurcations)
|
|
05.10.Gg
|
(Stochastic analysis methods)
|
|
87.10.Rt
|
(Monte Carlo simulations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12072262) and the Shaanxi Computer Society & Xiangteng Company Foundation. |
Corresponding Authors:
Youming Lei
E-mail: leiyouming@nwpu.edu.cn
|
Cite this article:
Yuqing Zhang(张宇青) and Youming Lei(雷佑铭) Logical stochastic resonance in a cross-bifurcation non-smooth system 2024 Chin. Phys. B 33 038201
|
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453 [2] Nicolis C 1982 Tellus A 34 1 [3] Van der Sande G, Verschaffelt G, Danckaert J and Mirasso C R 2005 Phys. Rev. E 72 016113 [4] Duan L, Ren Y and Duan F 2022 Chaos, Solitons Fractals 162 112429 [5] Gabbiani F, Metzner W, Wessel R and Koch C 1996 Nature 384 564 [6] Narins P M 2001 Nature 410 644 [7] Zhang Y, Jin Y and Li Y 2021 Physica D 422 132908 [8] Zhang Y, Jin Y and Xu P 2020 Int. J. Mech. Sci. 172 105418 [9] Duan L, Duan F, Chapeau-Blondeau F and Abbott D 2020 Phys. Lett. A 384 126143 [10] Fu Y, Kang Y and Chen G 2020 Front. Comput. Neurosci. 14 24 [11] Liu X, Duan L, Duan F, Chapeau-Blondeau F and Abbott D 2021 Phys. Lett. A 403 127387 [12] Jin Y, Wang H, Xu P and Xie W 2023 Probab. Eng. Mech. 72 103418 [13] Zhai Y, Fu Y and Kang Y 2023 IEEE Trans. Instrum. Meas. 72 3508011 [14] Murali K, Sinha S, Ditto W L and Bulsara A R 2009 Phys. Rev. Lett. 102 104101 [15] Murali K, Rajamohamed I, Sinha S, Ditto W and Bulsara A 2009 Appl. Phys. Lett. 95 194102 [16] Zhang L, Song A and He J 2010 Phys. Rev. E 82 051106 [17] Xu Y, Jin X and Zhang H 2013 Phys. Rev. E 88 052721 [18] Cheng G, Liu W, Gui R and Yao Y 2020 Chaos, Solitons Fractals 131 109514 [19] Wu J, Xu Y and Ma S 2019 Chaos, Solitons Fractals 119 171 [20] Wang N and Song A 2014 Eur. Phys. J. B 87 117 [21] Dari A, Kia B, Bulsara A and Ditto W 2011 Chaos 21 047521 [22] Dari A, Kia B, Wang X, Bulsara A R and Ditto W 2011 Phys. Rev. E 83 041909 [23] Zhang L, Zheng W, Xie F and Song A 2017 Phys. Rev. E 96 052203 [24] Wang N and Song A 2015 Neurocomputing 155 80 [25] Sharma A, Kohar V, Shrimali M D and Sinha S 2014 Nonlinear Dyn. 76 431 [26] Cheng G, Zheng S, Dong J, Xu Z and Gui R 2021 Chaos 31 053105 [27] Gui R, Li J, Yao Y and Cheng G 2021 Chaos, Solitons Fractals 148 111043 [28] Aravind M, Murali K and Sinha S 2018 Phys. Lett. A 382 1581 [29] Gupta A, Sohane A, Kohar V, Murali K and Sinha S 2011 Phys. Rev. E 84 055201 [30] Yao Y, Cheng G and Gui R 2020 Chaos 30 073125 [31] Huang S, Yang J, Liu H and Sanjuán M 2021 Int. J. Bifurcation Chaos 31 2150246 [32] Storni R, Ando H, Aihara K, Murali K and Sinha S 2012 Phys. Lett. A 376 930 [33] Zhang H, Xu Y, Xu W and Li X 2012 Chaos 22 043130 [34] Zhang H, Yang T, Xu W and Xu Y 2014 Nonlinear Dyn. 76 649 [35] Lu S, Dai Z, Liu Y, Liu G, Yang H and Wang F 2019 Chin. J. Phys. 58 179 [36] Liao Z, Ma K, Shamim Sarker M, Yamahara H, Seki M and Tabata H 2022 Results Phys. 42 105968 [37] Kang Y, Xu J and Xie Y 2003 Acta Phys. Sin. 52 2712 (in Chinese) [38] Nicolis C and Nicolis G 2017 Phys. Rev. E 95 032219 [39] Lei Y, Bi H and Zhang H 2018 Chaos 28 073104 [40] Bi H, Lei Y and Han Y 2019 Physica A 525 1296 [41] Sancho J M, San Miguel M, Katz S L and Gunton J D 1982 Phys. Rev. A 26 1589 [42] Cao L, Wu D and Ke S 1995 Phys. Rev. E 52 3228 [43] Liang G, Cao L and Wu D 2002 Phys. Lett. A 294 190 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|