Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120503    DOI: 10.1088/1674-1056/acf497
GENERAL Prev   Next  

Different wave patterns for two-coupled Maccari's system with complex structure via truncated Painlevé approach

Hongcai Ma(马红彩), Xinru Qi(戚心茹), and Aiping Deng(邓爱平)
Department of Applied Mathematics, Donghua University, Shanghai 201620, China
Abstract  We focused on the two-coupled Maccari's system. With the help of truncated Painlevé approach (TPA), we express local solution in the form of arbitrary functions. From the solution obtained, using its appropriate arbitrary functions, we have generated the rogue wave pattern solutions, rogue wave solutions, and lump solutions. In addition, by controlling the values of the parameters in the solutions, we show the dynamic behaviors of the rogue wave pattern solutions, rogue wave solutions, and lump solutions with the aid of Maple tool. The results of this study will contribute to the understanding of nonlinear wave dynamics in higher dimensional Maccari's systems.
Keywords:  two-coupled Maccari's system      rogue wave      lump wave      truncated Painlevé      approach  
Received:  09 August 2023      Revised:  27 August 2023      Accepted manuscript online:  29 August 2023
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Corresponding Authors:  Hongcai Ma, Xinru Qi     E-mail:  hongcaima@hotmail.com;qixinrudhu@163.com

Cite this article: 

Hongcai Ma(马红彩), Xinru Qi(戚心茹), and Aiping Deng(邓爱平) Different wave patterns for two-coupled Maccari's system with complex structure via truncated Painlevé approach 2023 Chin. Phys. B 32 120503

[1] Cheemaa N and Younis M 2016 Nonlinear Dyn. 83 1395
[2] Chen Y and Yan Z Y 2006 Appl. Math. Comput. 177 85
[3] Schnabel R B and Frank P D 1984 Siam J. Numer. Anal. 21 815
[4] Abbasbandy S 2006 Phys. Lett. A 360 109
[5] Wang M L, Zhou Y B and Li Z B 1996 Phys. Lett. A 216 67
[6] Darvishi M T and Barati A 2007 Appl. Math. Comput. 187 630
[7] Khan Y 2009 Int. J. Nonlinear Sci. Num. Simul. 10 1373
[8] Abbasbandy S 2003 Appl. Math. Comput. 145 887
[9] Petković M S, Neta B, Petković L D and Džunić J 2014 Appl. Math. Comput. 226 635
[10] He J S, Xu S W and Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007
[11] Radha R, Tang X Y and Lou S Y 2007 Z. Naturforsch. A 62 107
[12] Thilakavathy J, Amrutha R, Subramanian K and Rajan M M 2022 Nonlinear Dyn. 108 445
[13] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[14] Liu J G and Zhu W H 2021 Nonlinear Dyn. 103 1841
[15] Ahmed B S, Biswas A, Krishnan E and Kumar S 2013 Rom. Rep. Phys. 65 1138
[16] Jabbari A, Kheiri H and Bekir A 2011 Comput. Math. Appl. 62 2177
[17] Rostamy D and Zabihi F 2012 Nonlinear Stud. 19 229
[18] Li Z, Xie X Y and Jin C J 2022 Results Phys. 41 105932
[19] Vahidi J, Zekavatmand S M, Rezazadeh H, Inc M, Akinlar M A and Chu Y M 2021 Results Phys. 21 103801
[20] Maccari A 1997 J. Math. Phys. 38 4151
[21] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[22] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[23] Maccari A 1996 J. Math. Phys. 37 6207
[24] Cheemaa N, Chen S and Seadawy A R 2020 Results Phys. 17 102987
[25] İnç M, Aliyu A I, Yusuf A, Baleanu D and Nuray E 2018 Mod. Phys. Lett. B 32 1850014
[26] Lou S Y, Chen C L and Tang X Y 2002 J. Math. Phys. 43 4078
[1] Time-dependent variational approach to solve multi-dimensional time-dependent Schrödinger equation
Mingrui He(何明睿), Zhe Wang(王哲), Lufeng Yao(姚陆锋), and Yang Li(李洋). Chin. Phys. B, 2023, 32(12): 124206.
[2] Adiabatic evolution of optical beams of arbitrary shapes in nonlocal nonlinear media
Jiarui Che(车佳瑞), Yuxin Zheng(郑喻心), Guo Liang(梁果), and Qi Guo(郭旗). Chin. Phys. B, 2023, 32(10): 104207.
[3] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[6] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[7] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[8] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[11] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[12] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[13] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[14] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[15] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
No Suggested Reading articles found!