Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100506    DOI: 10.1088/1674-1056/acb91b
GENERAL Prev   Next  

Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses

Xiru Wu(伍锡如), Yuchong Zhang(张煜翀), Tiantian Zhang(张畑畑), and Binlei Zhang(张斌磊)
School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi-Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov-Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
Keywords:  cyber-physical systems      finite-time synchronization      distributed dynamic event-triggered mechanism      random packet losses  
Received:  25 October 2022      Revised:  22 January 2023      Accepted manuscript online:  06 February 2023
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  07.05.Dz (Control systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62263005), Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029), Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004), Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298), and Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155).
Corresponding Authors:  Yuchong Zhang     E-mail:  yczhang_1128@163.com

Cite this article: 

Xiru Wu(伍锡如), Yuchong Zhang(张煜翀), Tiantian Zhang(张畑畑), and Binlei Zhang(张斌磊) Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses 2023 Chin. Phys. B 32 100506

[1] Qi W H, Hou Y K, Zong G D and Ahn C K 2021 IEEE Trans. Circuits Syst. II, Express Briefs 68 2665
[2] Wang N and Li X J 2020 IEEECAA Journal of Automatica Sinica 7 1215
[3] Xie X H, Hu S L and Liu Y G 2023 IEEE Trans. Fuzzy Syst. 31 278
[4] Peng L H, Cao X H and Sun C Y 2021 IEEE Trans. Cybern. 51 779
[5] Wang L, Cao X H, Zhang H, Sun C Y and Zheng W X 2022 Automatica 137 110145
[6] Liu Z, Chen X and Yu J P 2023 IEEE Trans. Industr. Inform. 19 3155
[7] Qi W H, Lv C Y, Zong G D, Cheng J and Shi K B 2022 IEEE Trans. Circuits Syst. II, Express Briefs 69 159
[8] Sakthivel R, Kwon O M, Park M J, Choi S G and Sakthivel R 2022 IEEE Trans. Fuzzy Syst. 30 3257
[9] Hu S L, Yue D, Peng C, Xie X P and Yin X X 2015 Appl. Soft Comput. 30 400
[10] Qiu J B, Wang T, Sun K K, Rudas I and Gao H J 2022 IEEE Trans. Fuzzy Syst. 30 1175
[11] Wu Y Q, Lu R Q, Shi P, Su H Y and Wu Z G 2018 IEEE Trans. Fuzzy Syst. 26 782
[12] Tong S C, Li Y M, Feng G and Li T S 2011 IEEE Trans. Syst. Man Cybern. Cybern. 41 1124
[13] Lian Z, Shi P and Lim C C 2023 IEEE Trans. Industr. Inform. 19 6513
[14] Shen H, Xing M P, Huo S C, Wu Z G and Parl J H 2019 Fuzzy Sets Syst. 356 113
[15] Tao J, Lu R Q, Shi P, Su H Y and Wu Z G 2017 IEEE Trans. Cybern. 47 2377
[16] Lin W J, He Y, Zhang C K and Wu M 2020 IEEE Trans. Neural Netw. Learn Syst. 31 5456
[17] Zhang L X, Yang T, Shi P and Liu M 2016 IEEE Trans. Syst. Man Cybern. Syst. 46 1642
[18] Sakthivel R, Suveetha V T, Nithya V and Sakthivel R 2021 Math. Comput. Simulat. 185 403
[19] Li Y M, Li K W and Tong S C 2020 IEEE Trans. Neural Netw. Learn Syst. 31 2532
[20] Xu T L, Liu S and Wei G L 2022 Int. J. Robust Nonlinear Control 32 3923
[21] Guan C X, Fei Z Y, Karimi H R and Shi P 2021 IEEE Trans. Syst. Man Cybern. Syst. 51 2873
[22] Li Y, He Y, Zhang C K and Wu M 2023 IEEE Trans. Cybern. 53 5459
[23] Song X N, Man J T, Ahn C K and Song S 2021 IEEE Trans. Syst. Man Cybern. Syst. 51 3650
[24] Fei K F, Jiang M H and Zhang Y D 2021 J. Intell. Fuzzy Syst. 40 1695
[25] Xue M, Yan H C, Zhang H, Li Z C, Chen S M and Chen C Y 2021 IEEE Trans. Fuzzy Syst. 29 1052
[26] Chen X, Yin L Y, Liu Y T and Liu H 2019 Chin. Phys. B 28 090701
[27] Ding S B and Wang Z S 2020 Neural Netw. 125 31
[28] Rong N N, Wang Z S, Xie X P and Ding S B 2021 IEEE Trans. Circuits Syst. II, Express Briefs 68 3296
[29] Zhu F Z, Park J H and Peng L 2022 IEEE Trans. Signal Inf. Process. Netw. 8 258
[30] Xiao X Q, Park J H and Zhou L 2018 Appl. Math. Comput. 333 344
[31] Ge X H, Han Q L and Wang Z D 2019 IEEE Trans. Cybern. 49 171
[32] Deng Y H, Mo Z K and Lu H Q 2022 Chin. Phys. B 31 020503
[33] Zheng X Y, Zhang H, Wang Z P, Zhang C Z and Yan H C 2022 IEEE Trans. Fuzzy Syst. 30 2476
[34] Xiao M, Liu Z T and Su H Y 2022 Chinese J. Aeronaut. 34 237
[35] Wang J, Xing M P, Cao J D, Park J H and Shen H 2023 IEEE Trans. Neural Netw. Learn Syst. 34 278
[36] Jiang B P, Wu Z T and Karimi H R 2022 Automatica 142 110357
[37] Kar A K, Dhar N K and Verma N K 2019 IEEE Trans. Industr. Inform. 15 2101
[38] Xue M, Yan H C, Zhang H, Zhan X S and Shi K B 2022 IEEE Trans. Cybern. 52 12759
[39] Chen H Y, Dong Q X, Li Z X and Wang Y F 2019 Math. Probl. Eng. 2019 9624245
[40] Seuret A, Gouaisbaut F and Fridman E 2015 IEEE Trans. Automat. Contr. 60 2740
[41] Jin L, He Y, Jiang L and Wu M 2018 Inf. Sci. 462 357
[42] Sakthivel N, Pallavi S, Ma Y K and Vijayakumar V 2022 Soft Comput. 26 8371
[43] Park P, Ko J W and Jeong C 2011 Automatica 47 235
[1] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[2] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[3] Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs
Mohammad Pourmahmood Aghababa and Hassan Feizi . Chin. Phys. B, 2012, 21(6): 060506.
[4] A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2011, 20(9): 090505.
No Suggested Reading articles found!