Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020507    DOI: 10.1088/1674-1056/abd74c
GENERAL Prev   Next  

Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation

Qing-Yu Shi(石擎宇), Xia Huang(黄霞)†, Fang Yuan(袁方), and Yu-Xia Li(李玉霞)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  Based on a quadratic transformation and a switching function, a novel multi-wing chaotic switched system is proposed. First, a 4-wing chaotic system is constructed from a 2-wing chaotic system on the basis of a quadratic transformation. Then, a switching function is designed and by adjusting the switching function, the number and the distribution of the saddle-focus equilibrium points of the switched system can be regulated. Thus, a set of chaotic switched systems, which can produce 6-to-8-12-16-wing attractors, are generated. The Lyapunov exponent spectra, bifurcation diagrams, and Poincar\'e maps are given to verify the existence of the chaotic attractors. Besides, the digital circuit of the multi-wing chaotic switched system is designed by using the Verilog HDL fixed-point algorithm and the state machine control. Finally, the multi-wing chaotic attractors are demonstrated via FPGA platform. The experimental results show that the number of the wings of the chaotic attractors can be expanded more effectively with the combination of the quadratic transformation and the switching function methods.
Keywords:  quadratic transformation      chaotic switched system      FPGA  
Received:  12 October 2020      Revised:  23 December 2020      Accepted manuscript online:  30 December 2020
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61973199 and 61973200) and the Taishan Scholar Project of Shandong Province of China.
Corresponding Authors:  Corresponding author. E-mail: huangxia_qd@126.com   

Cite this article: 

Qing-Yu Shi(石擎宇), Xia Huang(黄霞), Fang Yuan(袁方), and Yu-Xia Li(李玉霞) Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation 2021 Chin. Phys. B 30 020507

1 Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu A M, Hirota K and Abd El-Latif A A 2020 Inf. Sci. 515 191
2 Atangana A and Qureshi S 2019 Chaos Solitons Fractals 123 320
3 Khan J S and Ahmad J 2019 Multidimens. Syst. Signal Process. 30 943
4 Zhang C X and Yu S M 2013 Int. J. Circuit Theory Appl. 41 221
5 Yu S M, L\"u J H, Chen G R and Yu X H 2010 IEEE Trans. Circuits Syst. II-Express Briefs 57 803
6 Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202
7 Zhang G T and Wang F Q 2018 Chin. Phys. B 27 018201
8 Luo X H, Tu Z W, Liu X R, Cai C, Liang Y L and Gong P 2010 Chin. Phys. B 19 070510
9 Miranda R and Stone E 1993 Phys. Lett. A 178 105
10 Xiong L, Zhang S, Zeng Y C and Liu B Q 2018 Chin. J. Phys. 56 2381
11 Hu X Y, Liu C X, Liu L, Yao Y P and Zheng G C 2017 Chin. Phys. B 26 110502
12 He S B, Sun K H and Zhu C X 2013 Chin. Phys. B 22 050506
13 Yu F, Wang C H, Yin J W and Xu H 2011 Chin. Phys. B 20 110505
14 Ji Y and Bi Q S 2010 Acta Phys. Sin. 59 7612 (in Chinese)
15 Li C, Min F H, Jin Q S and Ma H Y 2017 AIP Adv. 7 125204
16 Peng Z P, Wang C H, Lin Y and Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese)
17 Hua Z Y, Zhou Y C and Huang H J 2019 Inf. Sci. 480 403
18 Zhang L M, Sun K H, Liu W H and He S B 2017 Chin. Phys. B 26 100504
19 Li Y, Li Z J, Ma M L and Wang M J 2020 Multimed. Tools Appl. 79 29161
20 Huang L L, Zhang Z F, Xiang J H and Wang S M 2019 Complexity 2019 5803506
21 Zhang C X and Yu S M 2016 Chin. Phys. B 25 050503
22 Chang H, Li Y X and Chen G R 2020 Chaos 30 043110
23 Zhong X Y, Peng M F and Shahidehpour M 2019 Int. J. Circuit Theory Appl. 47 686
24 Zhang X and Wang C H 2019 Int. J. Bifurcation Chaos 29 1950117
25 Bao B C, Jiang T, Wang G Y, Jin P P, Bao H and Chen M 2017 Nonlinear Dyn. 89 1157
26 Xue W, Qi G Y, Mu J J, Jia H Y and Guo Y L 2013 Chin. Phys. B 22 080504
27 Huang Y 2014 Acta Phys. Sin. 63 080505 (in Chinese)
28 Luo M W, Luo X H and Li H Q 2013 Acta Phys. Sin. 62 020512 (in Chinese)
29 Zhou X, Wang C H and Guo X R 2012 Acta Phys. Sin. 61 200506 (in Chinese)
30 Qiu M, Yu S M, Wen Y Q, L\"u J H, He J B and Lin Z S 2017 Int. J. Bifurcation Chaos 27 1750040
31 Wang F Q and Xiao Y F 2020 Complexity 2020 9169242
32 Liu Q, Fang J Q, Zhao G and Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese)
33 Wang H J, Song B B, Liu Q, Pan J and Ding Q 2014 Int. J. Bifurcation Chaos 24 1450054
34 Dong E Z, Yuan M F, Zhang C, Tong J G, Chen Z Q and Du S Z 2018 Int. J. Bifurcation Chaos 28 1850081
35 Shah D K, Chaurasiya R B, Vyawahare V A, Pichhode K and Patil M D 2017 AEU-Int. J. Electron. Commun. 78 245
36 Senouci A, Bouhedjeur H, Tourche K and Boukabou A 2017 AEU-Int. J. Electron. Commun. 82 211
37 Zhang C X, Yu S M and Zhang Y 2011 Int. J. Mod. Phys. B 25 2183
38 Yu S M, Tang W K S, L\"u J H and Chen G R 2010 Int. J. Circuit Theory Appl. 38 243
39 Sprott J C 2011 Int. J. Bifurcation Chaos 21 2391
[1] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[2] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[3] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[4] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[5] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[6] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[7] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[8] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[9] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[10] Study on a new chaotic bitwise dynamical system and its FPGA implementation
Wang Qian-Xue (王倩雪), Yu Si-Min (禹思敏), C. Guyeux, J. Bahi, Fang Xiao-Le (方晓乐). Chin. Phys. B, 2015, 24(6): 060503.
[11] Design and FPGA Implementation of a new hyperchaotic system
Wang Guang-Yi(王光义), Bao Xu-Lei(包旭雷), and Wang Zhong-Lin(王忠林). Chin. Phys. B, 2008, 17(10): 3596-3602.
No Suggested Reading articles found!