Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098102    DOI: 10.1088/1674-1056/21/9/098102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Microstructure and photocatalytic activity of titanium dioxide nanoparticles

Li Chun-Yan (李春艳)a, Wang Jiang-Bin (王江彬)b, Wang Yi-Qian (王乙潜)a
a The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071, China;
b Laiyang Zixilai Environmental Protection Technology Co. Ltd., North of Toll Station, Laiyang 265229, China
Abstract  Titanium dioxide nanoparticles with an average diameter of about 10 nm are fabricated using a sintering method. The degradation of methyl orange indicates that the photocatalytic efficiency is greatly enhanced, which is measured to be 62.81%. The transmission electron microscopy is used to investigate the microstructure of TiO2 nanoparticles in order to correlate with their photocatalytic properties. High-resolution transmission electron microscopy examinations show that all the nanoparticles belong to the anatase phase, and pure edge dislocations exist in some nanoparticles. The great enhancement of photocatalytic efficiency is attributed to two factors, the quantum size effect and the surface defects in the nanoparticles.
Keywords:  titanium dioxide nanoparticles      high-resolution transmission electron microscopy      photocatalytic activity  
Received:  13 January 2012      Revised:  16 March 2012      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB722705), the Shandong Provincial Natural Science Foundation for Outstanding Young Scientists, China (Grant No. JQ201002), and the Shandong Provincial Scientific Research Award for Outstanding Young and Middle-Aged Scientists, China (Grant No. BS2009CL0005).
Corresponding Authors:  Wang Yi-Qian     E-mail:  yqwang@qdu.edu.cn

Cite this article: 

Li Chun-Yan (李春艳), Wang Jiang-Bin (王江彬), Wang Yi-Qian (王乙潜) Microstructure and photocatalytic activity of titanium dioxide nanoparticles 2012 Chin. Phys. B 21 098102

[1] Fujishima A and Honda K 1972 Nature 238 37
[2] Hadjiivanov K I and Klissurski D G 1996 Chem. Soc. Rev. 25 61
[3] Linsebigler A L, Lu G Q and Yates J T 1995 Chem. Rev. 95 735
[4] Chen X B and Mao S S 1995 Chem. Rev. 107 2891
[5] Xu X Y, Hu L H, Li W X and Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)
[6] Wang Y Q, Hu G Q, Duan X F, Sun H L and Xue Q K 2002 Chem. Phys. Lett. 365 427
[7] Hoyer P 1996 Langmuir 12 1411
[8] Shankar K, Basham J I, Allam N K, Varghese O K, Mor G K, Feng X J, Paulose M, Seabold J A, Choi K and Grimes C A 2009 J. Phys. Chem. C 113 6327
[9] Shi J W, Zheng J T and Wu P 2009 J. Hazard. Mater. 161 416
[10] Ding P, Liu F M, Yang X A and Li J Q 2011 Acta Phys. Sin. 60 036803 (in Chinese)
[11] Wang C C and Ying J Y 1999 Chem. Mater. 11 3113
[12] Billik P and Plesch G 2007 Mater. Lett. 61 1183
[13] Keswania R K, Ghodkea H, Sarkara D, Khilara K C and Srinivasa R S 2010 Colloids Surf. A: Physicochem. Eng. Asp. 369 75
[14] Anpo M, Shima T, Kodama S and Kubokawa Y 1987 J. Phys. Chem. 91 4305
[15] Zhang Z B, Wang C C, Zakaria R and Ying J Y 1998 J. Phys. Chem. B 102 10871
[16] Ruan S P, Wu F Q, Zhang T, Gao W, Xu B K and Zhao M Y 2001 Mater. Chem. Phys. 69 7
[17] Chen L X, Rajh T, Wang Z Y and Thurnauer M C 1997 J. Phys. Chem. B 101 10688
[18] Yang Y, Li X J, Chen J T and Wang L Y 2004 J. Photochem. Photobiol. A: Chem. 163 517
[19] Shevlin S A and Woodley S M 2010 J. Phys. Chem. C 114 17333
[20] Stengl V, Bakardjieva S and Murafa N 2009 Mater. Chem. Phys. 114 217
[21] Bai R, Li Q L, Zhang W, Li J Q and Hao Y 2010 Technol. Dev. Chem. Ind. 39 3 (in Chinese)
[22] Zhang L Y, Cao Y, Liu Z X, Yu X L and Lü Z F 2011 Chin. J. Rare Metals 35 504 (in Chinese)
[23] Yang H M, Zhang K, Shi R R, Li X W, Dong X D and Yu Y M 2006 J. Alloys Compd. 413 302
[24] Li Y J, Li X D, Li J W and Yin J 2005 Catal. Commun. 6 650
[25] Salari M, Mousavi Khoie S M, Marashi P and Rezaee M 2009 J. Alloys Compd. 469 386
[26] Lazzeri M, Vittadini A and Selloni A 2001 Phys. Rev. B 63 155409
[27] Oliver P M, Watson G W, Kelsey E T and Parker S C 1997 J. Mater. Chem. 7 563
[28] Choi H, Stathatos E and Dionysiou D D 2007 Top. Catal. 44 513
[1] Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties
Jun-Lian Chen(陈军联), Neena Devi, Na Li(李娜), De-Jun Fu(付德君), Xian-Wen Ke(柯贤文). Chin. Phys. B, 2018, 27(8): 086102.
[2] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[3] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng (邵珠峰), Yang Yan-Qiang (杨延强), Liu Shu-Tian (刘树田), Wang Qiang (王强). Chin. Phys. B, 2014, 23(9): 096102.
[4] Charge ordering modulations in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm
Ding Yan-Hua (丁艳华), Wang Yi-Qian (王乙潜), Cai Rong-Sheng (蔡鎔声), Chen Yun-Zhong (陈允忠), Sun Ji-Rong (孙继荣 ). Chin. Phys. B, 2012, 21(8): 087502.
[5] Experimental verification of Foreman dislocation model
Zhao Chun-Wang(赵春旺), Xing Yong-Ming(邢永明), and Bai Pu-Cun(白朴存). Chin. Phys. B, 2009, 18(6): 2464-2468.
[6] Study of superstructure II in multiferroic BiMnO3
Ge Bing-Hui(葛炳辉), Li Fang-Hua(李方华), Li Xue-Ming(李雪明), Wang Yu-Mei (王玉梅), Chi Zhen-Hua (迟振华), and Jin Chang-Qing (靳常青). Chin. Phys. B, 2008, 17(9): 3163-3169.
No Suggested Reading articles found!