Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120402    DOI: 10.1088/1674-1056/22/12/120402
GENERAL Prev   Next  

High-frequency gravitational waves having large spectral densities and their electromagnetic response

Li Fang-Yu (李芳昱), Wen Hao (文毫), Fang Zhen-Yun (方祯云)
Department of Physics, Chongqing University, Chongqing 400044, China
Abstract  Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
Keywords:  high-frequency gravitational waves      electromagnetic response of high-frequency gravitational waves      superconducting microwave cavities      synchro-resonance system  
Received:  09 April 2013      Revised:  20 May 2013      Accepted manuscript online: 
PACS:  04.30.Nk (Wave propagation and interactions)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  04.30.Db (Wave generation and sources)  
  04.80.Nn (Gravitational wave detectors and experiments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075224 and 11375279) and the Foundation of China Academy of Engineering Physics (Grant Nos. 2008 T0401 and T0402).
Corresponding Authors:  Li Fang-Yu     E-mail:  fangyuli@cqu.edu.cn

Cite this article: 

Li Fang-Yu (李芳昱), Wen Hao (文毫), Fang Zhen-Yun (方祯云) High-frequency gravitational waves having large spectral densities and their electromagnetic response 2013 Chin. Phys. B 22 120402

[1] Cuadrado G G 2009 AIP Conf. Proc. 1103 553
[2] Tong M L and Zhang Y 2009 Phys. Rev. D 80 084022
[3] Giovannini M 1999 Phys. Rev. D 60 123511
[4] Giovannini M 2009 Class. Quantum Grav. 26 045004
[5] Bisnovatyi-Kogun G S and Rudenko V R 2004 Class. Quantum Grav. 21 3347
[6] Cruise A M 2012 Class. Quantum Grav. 29 095003
[7] Press W H and Thorne K S 1972 Ann. Rev. Astron. Astrophys. 10 335
[8] Abbott B P, et al. 2009 Nature (London) 460 990
[9] Gasperini M and Veneziano G 2003 Phys. Rep. 373 1
[10] Veneziano G 2004 Sci. Am. 290 54
[11] Clarkson C and Seahra S S 2007 Class. Quantum Grav. 24 F33
[12] Servin M and Brodin G 2003 Phys. Rev. D 68 044017
[13] Sivaram C and Arun K 2011 arXiv: 0708.3343[astro-ph]
[14] Chen P 1994 Stanford Linear Accelerator Center Report (SLAC-PUB-6666) March 23, 1994, Rome, Italy, p. 379
[15] Wu X G and Fang Z Y 2008 Phys. Rev. D 78 094002
[16] Li F Y and Tang M X 2002 Int. J. Mod. Phys. D 11 1049
[17] Nikishov A I and Ritus V I 1990 Sov. Phys. JETP 71 643
[18] Chen P 1991 Mod. Phys. Lett. A 6 1069
[19] Gertsenshtein M E 1962 Sov. Phys. JETP 14 84
[20] Boccaletti D, De Sabbata V, Fortint P and Gualdi C 1970 Nuovo Cim. B 70 129
[21] De Logi W K and Mickelson A R 1977 Phys. Rev. D 16 2915
[22] Li F Y, Tang M X and Shi D P 2003 Phys. Rev. D 67 104008
[23] Li F Y, Yang N, Fang Z Y, Baker R M L Jr, Stephenson G and Wen H 2009 Phys. Rev. D 80 064013, arXiv: 0909.4118v2[gr-qc]
[24] Li J, Lin K, Li F Y and Zhong Y H 2011 Gen. Relativ. Gravit. 43 2209
[25] Li F Y and Baker R M L Jr 2007 Int. J. Mod. Phys. B 21 3274
[26] Li F Y, Chen Y and Wang P 2007 Chin. Phys. Lett. 24 3328
[27] Grishchuk L P and Sazin M V 1983 Sov. Phys. JETP 53 1128
[28] Grishchuk L P 2003 arXiv: gr-qc/0306013
[29] Bessonov E G 1998 arXiv: physics/9802037[physics.class-ph]
[30] Braginsky V B, Caves C M and Thorne K S 1977 Phys. Rev. D 15 2047
[31] Braginsky V B and Khalili F Y 1999 Phys. Lett. A 257 241
[32] Gerlach U H 1992 Phys. Rev. D 46 1239
[33] Woods R, Baker R M L Jr, Li F Y, Stephenson G V, Davis E W and Beckwith A W 2011 J. Mod. Phys. 2 498
[34] Yariv A 1989 Quantum Electronics, 3rd edn. (New York: Wiley)
[35] Li J, Li F Y and Zhong Y H 2009 Chin. Phys. B 18 922
[36] Stephenson G V 2009 AIP Conf. Proc. 1103 542
[1] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[2] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[3] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[4] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[5] Geometrical optics-based ray field tracing method for complex source beam applications
Min Gao(高敏), Feng Yang(杨峰), Xue-Wu Cui(崔学武), Rui Wang(王瑞). Chin. Phys. B, 2018, 27(4): 040401.
[6] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[7] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[8] Time-domain nature of group delay
Wang Jian-Wu (王建武), Feng Zheng-He (冯正和). Chin. Phys. B, 2015, 24(10): 100301.
[9] An improved element-free Galerkin method for solving generalized fifth-order Korteweg-de Vries equation
Feng Zhao (冯昭), Wang Xiao-Dong (王晓东), Ouyang Jie (欧阳洁). Chin. Phys. B, 2013, 22(7): 074704.
[10] Scattering and absorption of particles by a black hole involving a global monopole
Shao Jian Zhou(邵建舟) and Wang Yong Jiu(王永久) . Chin. Phys. B, 2012, 21(4): 040404.
[11] Post-post-Newtonian deflection of light ray in multiple systems with PPN parameters
Gong Yan-Xiang(宫衍香) and Wu Xiao-Mei(吴晓梅) . Chin. Phys. B, 2011, 20(2): 020403.
[12] A special form of electrodynamical response to a gravitational wave: outgoing and imploding photon fluxes
Li Fang-Yu (李芳昱), Su Xun (苏荀), Long Bing-Wei (龙炳蔚), Tang Meng-Xi (唐孟希). Chin. Phys. B, 2002, 11(5): 461-466.
No Suggested Reading articles found!