Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040301    DOI: 10.1088/1674-1056/19/4/040301
GENERAL Prev   Next  

A new type of conserved quantity of Lie symmetry for the Lagrange system

Fang Jian-Hui(方建会)
College of Physics Science and Technology, China University of Petroleum, Dongying 257061, China
Abstract  This paper studies a new type of conserved quantity which is directly induced by Lie symmetry of the Lagrange system. Firstly, the criterion of Lie symmetry for the Lagrange system is given. Secondly, the conditions of existence of the new conserved quantity as well as its forms are proposed. Lastly, an example is given to illustrate the application of the result.
Keywords:  Lagrange system      Lie symmetry      new conserved quantity  
Received:  15 February 2009      Revised:  26 August 2009      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  

Cite this article: 

Fang Jian-Hui(方建会) A new type of conserved quantity of Lie symmetry for the Lagrange system 2010 Chin. Phys. B 19 040301

[1] Noether A E 1918 Math. Phys. KI II 235
[2] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[4] Mei F X 2001 Chin. Phys. 10 177
[5] Fang J H 2003 Commun. Theor. Phys. 40 269
[6] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese)
[7] Zhang Y 2005 Acta Phys. Sin. 54 2980 (in Chinese)
[8] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[9] Wang S Y and Mei F X 2002 Chin. Phys. 11 5
[10] Mei F X, Xu X J and Zhang Y F 2004 Acta Mech. Sin. 20] 668
[11] Wu H B 2004 Chin. Phys. 13 589
[12] Zhang H B and Chen L Q 2005 J. Phys. Soc. Jpn. 74 905
[13] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[14] Xu X J, Qin M C and Mei F X 2005 Chin. Phys. 14 1287
[15] Fu J L, Chen L Q, Jimenez S and Tang Y F 2006 Phys. Lett. A 358 5
[16] Fang J H, Ding N and Wang P 2007 Acta Phys. Sin. 56 3039 (in Chinese)
[17] Jia L Q, Zhang Y Y and Luo S K 2007 Chin. Phys. 16 3168
[18] Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese)
[19] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys. Lett. 25 809
[20] Shi S Y, Fu J L, Huang X H, Chen L Q and Zhang X B 2008 Chin. Phys. B 17 754
[21] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[22] Huang X H, Zhang X B and Shi S Y 2008 Acta Phys. Sin. 57 6056 (in Chinese)
[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[3] Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints
Liang-Ming Chen(陈亮名), Yue-Yong Lv(吕跃勇), Chuan-Jiang Li(李传江), Guang-Fu Ma(马广富). Chin. Phys. B, 2016, 25(12): 128701.
[4] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[5] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[6] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[7] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[8] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2012, 21(4): 040201.
[9] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[10] A new type of conserved quantity of Mei symmetry for the motion of mechanico–electrical coupling dynamical systems
Zhao Li(赵丽), Fu Jing-Li(傅景礼),and Chen Ben-Yong(陈本永) . Chin. Phys. B, 2011, 20(4): 040201.
[11] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang(施沈阳) and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2011, 20(2): 021101.
[12] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling(张美玲), Sun Xian-Ting(孙现亭), Wang Xiao-Xiao(王肖肖), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(11): 110202.
[13] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[14] Noether's theory of Lagrange systems in discrete case
Lü Hong-Sheng(吕洪升), Zhang Hong-Bin(张宏彬), and Gu Shu-Long(顾书龙) . Chin. Phys. B, 2011, 20(1): 011101.
[15] Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration
Zhao Li(赵丽), Fu Jing-Li(傅景礼), and Chen Ben-Yong(陈本永). Chin. Phys. B, 2010, 19(1): 010301.
No Suggested Reading articles found!