Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047501    DOI: 10.1088/1674-1056/ac8cdb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Algebraic equation of motion approach for solving the Anderson model

Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良)
Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  Based on the algebraic equation of motion (AEOM) approach, we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit. The related spectral function satisfies the sum rule and shows that there is a well-known three-peak structure at zero temperature. In the low energy limit, we obtain the analytical formula of the Kondo temperature that is the same as the exact solution in form except for a prefactor. We also show that the shape of the Kondo resonance is the Lorentzian form and the corresponding weight is proportional to the spin-flip correlation function.
Keywords:  Anderson model      multiple-point correlation function      spin-flip correlation function  
Received:  18 April 2022      Revised:  26 June 2022      Accepted manuscript online:  26 August 2022
PACS:  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  03.65.Fd (Algebraic methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974420).
Corresponding Authors:  Yu-Liang Liu     E-mail:  ylliu@ruc.edu.cn

Cite this article: 

Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良) Algebraic equation of motion approach for solving the Anderson model 2023 Chin. Phys. B 32 047501

[1] Anderson P W 1961 Phys. Rev. 124 41
[2] Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge University Press)
[3] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M 1998 Nature 391 156
[4] Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540
[5] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[6] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[7] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192
[8] Madhavan V, Chen W, Jamneala T, Crommie M and Wingreen N 1998 Science 280 567
[9] Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466
[10] Bork J, Zhang Y h, Diekhöner L, Borda L, Simon P, Kroha J, Wahl P and Kern K 2011 Nat. Phys. 7 901
[11] Prüser H, Dargel P E, Bouhassoune M, Ulbrich R G, Pruschke T, Lounis S and Wenderoth M 2014 Nat. Commun. 5 5417
[12] Spinelli A, Gerrits M, Toskovic R, Bryant B, Ternes M and Otte A 2015 Nat. Commun. 6 10046
[13] Chen W, Yan Y, Ren M, Zhang T and Feng D 2022 Sci. China Phys. Mech. 65 246811
[14] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[15] Kasuya T 1956 Prog. Theor. Phys. 16 45
[16] Yosida K 1957 Phys. Rev. 106 893
[17] Doniach S 1977 Physica B+C 91 231
[18] Jayaprakash C, Krishna-murthy H R and Wilkins J W 1981 Phys. Rev. Lett. 47 737
[19] Jones B A and Varma C M 1987 Phys. Rev. Lett. 58 843
[20] Jones B A, Varma C M and Wilkins J W 1988 Phys. Rev. Lett. 61 125
[21] Sakai O, Shimizu Y and Kasuya T 1990 Solid State Commun. 75 81
[22] Fye R M 1994 Phys. Rev. Lett. 72 916
[23] Affleck I, Ludwig A W W and Jones B A 1995 Phys. Rev. B 52 9528
[24] Silva J, Lima W, Oliveira W, Mello J, Oliveira L N D and Wilkins J 1996 Phys. Rev. Lett. 76 275
[25] Zhu L and Zhu J X 2011 Phys. Rev. B 83 195103
[26] He R Q, Dai J and Lu Z Y 2015 Phys. Rev. B 91 155140
[27] Jabben T, Grewe N and Schmitt S 2012 Phys. Rev. B 85 045133
[28] Lechtenberg B, Eickhoff F and Anders F B 2017 Phys. Rev. B 96 041109
[29] Eickhoff F, Lechtenberg B and Anders F B 2018 Phys. Rev. B 98 115103
[30] Nejati A, Ballmann K and Kroha J 2017 Phys. Rev. Lett. 118 117204
[31] Nagaoka Y 1965 Phys. Rev. 138 A1112
[32] Lacroix C 1981 J. Phys. F: Metal Phys. 11 2389
[33] Lacroix C 1982 J. Appl. Phys. 53 2131
[34] Luo H G, Ying J J and Wang S J 1999 Phys. Rev. B 59 9710
[35] Kang K and Min B I 1995 Phys. Rev. B 52 10689
[36] Fan P, Yang K, Ma K H and Tong N H 2018 Phys. Rev. B 97 165140
[37] Ming-Lun C and Shun-Jin W 2007 Chin. Phys. B 16 2096
[38] Liu Y L 2018 Int. J. Mod. Phys. B 32 1850258
[39] Liu Y L 2019 Int. J. Mod. Phys. B 33 1950355
[40] Liu Y L 2021 Int. J. Mod. Phys. B 35 2150064
[41] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[42] Yamada K 1975 Prog. Theor. Phys. 53 970
[43] Haldane F D M 1978 Phys. Rev. Lett. 40 416
[44] Wiegmann P B 1981 J. Phys. C: Solid State Phys. 14 1463
[1] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[2] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[3] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[4] Antiferromagnetism and Kondo screening on a honeycomb lattice
Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Guo Wen-Xiang (郭文祥), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2015, 24(5): 057101.
[5] Electronic transport properties of the single-impurity Anderson model
Chen Ming-Lun(陈明伦) and Wang Shun-Jin(王顺金). Chin. Phys. B, 2007, 16(7): 2096-2100.
No Suggested Reading articles found!