CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Algebraic equation of motion approach for solving the Anderson model |
Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良)† |
Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract Based on the algebraic equation of motion (AEOM) approach, we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit. The related spectral function satisfies the sum rule and shows that there is a well-known three-peak structure at zero temperature. In the low energy limit, we obtain the analytical formula of the Kondo temperature that is the same as the exact solution in form except for a prefactor. We also show that the shape of the Kondo resonance is the Lorentzian form and the corresponding weight is proportional to the spin-flip correlation function.
|
Received: 18 April 2022
Revised: 26 June 2022
Accepted manuscript online: 26 August 2022
|
PACS:
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974420). |
Corresponding Authors:
Yu-Liang Liu
E-mail: ylliu@ruc.edu.cn
|
Cite this article:
Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良) Algebraic equation of motion approach for solving the Anderson model 2023 Chin. Phys. B 32 047501
|
[1] Anderson P W 1961 Phys. Rev. 124 41 [2] Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge University Press) [3] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M 1998 Nature 391 156 [4] Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540 [5] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [6] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070 [7] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192 [8] Madhavan V, Chen W, Jamneala T, Crommie M and Wingreen N 1998 Science 280 567 [9] Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466 [10] Bork J, Zhang Y h, Diekhöner L, Borda L, Simon P, Kroha J, Wahl P and Kern K 2011 Nat. Phys. 7 901 [11] Prüser H, Dargel P E, Bouhassoune M, Ulbrich R G, Pruschke T, Lounis S and Wenderoth M 2014 Nat. Commun. 5 5417 [12] Spinelli A, Gerrits M, Toskovic R, Bryant B, Ternes M and Otte A 2015 Nat. Commun. 6 10046 [13] Chen W, Yan Y, Ren M, Zhang T and Feng D 2022 Sci. China Phys. Mech. 65 246811 [14] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99 [15] Kasuya T 1956 Prog. Theor. Phys. 16 45 [16] Yosida K 1957 Phys. Rev. 106 893 [17] Doniach S 1977 Physica B+C 91 231 [18] Jayaprakash C, Krishna-murthy H R and Wilkins J W 1981 Phys. Rev. Lett. 47 737 [19] Jones B A and Varma C M 1987 Phys. Rev. Lett. 58 843 [20] Jones B A, Varma C M and Wilkins J W 1988 Phys. Rev. Lett. 61 125 [21] Sakai O, Shimizu Y and Kasuya T 1990 Solid State Commun. 75 81 [22] Fye R M 1994 Phys. Rev. Lett. 72 916 [23] Affleck I, Ludwig A W W and Jones B A 1995 Phys. Rev. B 52 9528 [24] Silva J, Lima W, Oliveira W, Mello J, Oliveira L N D and Wilkins J 1996 Phys. Rev. Lett. 76 275 [25] Zhu L and Zhu J X 2011 Phys. Rev. B 83 195103 [26] He R Q, Dai J and Lu Z Y 2015 Phys. Rev. B 91 155140 [27] Jabben T, Grewe N and Schmitt S 2012 Phys. Rev. B 85 045133 [28] Lechtenberg B, Eickhoff F and Anders F B 2017 Phys. Rev. B 96 041109 [29] Eickhoff F, Lechtenberg B and Anders F B 2018 Phys. Rev. B 98 115103 [30] Nejati A, Ballmann K and Kroha J 2017 Phys. Rev. Lett. 118 117204 [31] Nagaoka Y 1965 Phys. Rev. 138 A1112 [32] Lacroix C 1981 J. Phys. F: Metal Phys. 11 2389 [33] Lacroix C 1982 J. Appl. Phys. 53 2131 [34] Luo H G, Ying J J and Wang S J 1999 Phys. Rev. B 59 9710 [35] Kang K and Min B I 1995 Phys. Rev. B 52 10689 [36] Fan P, Yang K, Ma K H and Tong N H 2018 Phys. Rev. B 97 165140 [37] Ming-Lun C and Shun-Jin W 2007 Chin. Phys. B 16 2096 [38] Liu Y L 2018 Int. J. Mod. Phys. B 32 1850258 [39] Liu Y L 2019 Int. J. Mod. Phys. B 33 1950355 [40] Liu Y L 2021 Int. J. Mod. Phys. B 35 2150064 [41] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491 [42] Yamada K 1975 Prog. Theor. Phys. 53 970 [43] Haldane F D M 1978 Phys. Rev. Lett. 40 416 [44] Wiegmann P B 1981 J. Phys. C: Solid State Phys. 14 1463 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|