Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047502    DOI: 10.1088/1674-1056/abd164
RAPID COMMUNICATION Prev   Next  

Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2

Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉)
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  Magnetic order in two-dimensional systems was not supposed to exist at finite temperature. In recent years, the successful preparation of two-dimensional ferromagnetic materials such as CrI3, Cr2Ge2Te6, and Fe3GeTe2 opens up a new chapter in the remarkable field of two-dimensional materials. Here, we report on a theoretical analysis of the stability of ferromagnetism in Fe3GeTe2. We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe3GeTe2. Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems. The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems.
Keywords:  two-dimensional (2D) ferromagnetism      spin wave      magnetic anisotropy  
Received:  21 September 2020      Revised:  30 November 2020      Accepted manuscript online:  08 December 2020
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. XJS200503) and the Post-Doctoral Research Project of Shaanxi Province, China.
Corresponding Authors:  Corresponding author. E-mail: zzlin@xidian.edu.cn   

Cite this article: 

Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉) Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2 2021 Chin. Phys. B 30 047502

1 Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
2 Pan L, Wen H, Huang L, Chen L, Deng H X, Xia J B and Wei Z 2019 Chin. Phys. B 28 107504
3 Zhao L S, Chen C P, Liu L L, Yu H X, Chen Y and Wang X C 2018 Chin. Phys. B 27 016301
4 Kang K, Lee K H, Han Y, Gao H, Xie S, Muller D A and Park J 2017 Nature 550 229
5 Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524
6 Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690
7 Xu W, Liu W, Schmidt J F, Zhao W, Lu X, Raab T, Diederichs C, Gao W, Seletskiy D V and Xiong Q 2017 Nature 541 62
8 Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X 2017 Adv. Func. Mat. 27 1604093
9 Yuan J H, Chen N, Mo H, Zhang Y and Zhang Z H 2016 Chin. Phys. Lett. 33 037302
10 Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
11 Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y and Ji W 2019 Phys. Rev. B 99 144401
12 Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H and Tsen A W 2018 Nano Lett. 18 4885
13 Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X 2018 Science 360 1214
14 Wang Z, Gutierrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoglu A, Giannini E and Morpurgo A F 2018 Nat. Commun. 9 2516
15 Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
16 Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
17 Zhang J, Cai X, Xia W, Liang A, Huang J, Wang C, Yang L, Yuan H, Chen Y, Zhang S, Guo Y, Liu Z and Li G 2019 Phys. Rev. Lett. 123 047203
18 Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
19 Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
20 Chen B, Yang J, Wang H, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M 2013 J. Phys. Soc. Jpn. 82 124711
21 Deiseroth H J, Aleksandrov K, Reiner C, Kienle L and Kremer R K 2006 Eur. J. Inorg. Chem. 8 1561
22 May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 014411
23 Tian C K, Wang C, Ji W, Wang J C, Xia T L, Wang L, Liu J J, Zhang H X and Cheng P 2019 Phys. Rev. B 99 184428
24 Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H and Xu X D 2018 Nat. Mater. 17 778
25 Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K and Xiu F 2017 npj 2D Mat. Appl. 1 30
26 Zheng G, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y, Peng J, Partridge J, Farrar L, Yi J, Xiong Y, Tian M, Zhao Y J and Wang L 2020 Phys. Rev. Lett. 125 047202
27 Onsager L 1944 Phys. Rev. 65 117
28 Fazekas P1999 Lecture Notes on Electron Correlation and Magnetism (Singapore: World Scientific)
29 Isaacs E B and Marianetti C A 2016 Phys. Rev. B 94 035120
30 Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429
31 Holstein T and L P H 1940 Phys. Rev. 58 1098
32 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
33 Blöchl P E 1994 Phys. Rev. B 50 17953
34 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
35 Kresse G and Furthmüller J 1996 Comp. Mat. Sci. 6 15
36 Kresse G and Hafner J 1993 Phys. Rev. B 47 558
37 Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
38 Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
39 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
40 Grimme S, Ehrlich S and Goerigk L 2011 J. Comp. Chem. 32 1456
41 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
42 Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
43 Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 124 219906
44 Singh D J and Du M-H 2008 Phys. Rev. Lett. 100 237003
45 Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823
46 O'Handley R C1999 Modern Magnetic Materials: Principles and Applications (Wiley-Interscience, 1st ed.).
47 Blundell S2001 Magnetism in Condensed Matter (New York: Oxford University Press)
[1] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[2] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[3] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[4] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[5] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[6] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[7] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[8] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[9] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[10] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
[11] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[12] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[13] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[14] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[15] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[1] WU XIAO-SHAN, YAN XIAO-HUA, MA BEN-KUN, LIN ZHEN-JIN, YANG XI-ZHEN. CALCULATION OF THE HEAT OF FORMATION OF TERNARY COMPOUNDS: P-Ga-As, N-Ga-As, N-Ga-P[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(1): 62 -70 .
[2] FENG CHUN-MU, GE HONG-LIANG, YU GAO-XIANG, ZHANG QI-RUI. ELECTRICAL TRANSPORT BEHAVIOR OF AN Au DIFFUSE FRINGE FILM PERCOLATION SYSTEM[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(7): 538 -543 .
[3] Yang Shu-Zheng, Lin Li-Bin. The quantum nonthermal effect of a nonstationary Kerr-Newman black hole and the average range of the effective particles[J]. Chin. Phys., 2002, 11(6): 619 -623 .
[4] Liu Xiang-Rong, Cao Chong-De, Wei Bing-Bo. Rapid eutectic growth in undercooled Al-Ge alloy under free fall condition[J]. Chin. Phys., 2003, 12(11): 1266 -1271 .
[5] Zhao Yan-Ting, Zhao Jian-Ming, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of the sub-Doppler transmission spectroscopy in a thin vapour layer at room temperature[J]. Chin. Phys., 2004, 13(9): 1414 -1417 .
[6] Fang Tong-Zhen, Jiang Nan, Wang Long. Calculation of ion energy distributions of argon excimer ions generated in helicon plasma[J]. Chin. Phys., 2005, 14(11): 2256 -2261 .
[7] Chen Li-Bing, Lu Hong, Liu Yu-Hua. Implementing remotely a single-qubit rotation operation by three-qubit entanglement[J]. Chin. Phys., 2005, 14(7): 1323 -1328 .
[8] Chen Yu, Han An-Jia, Ke Jian-Hong, Lin Zhen-Quan. Aggregation processes with catalysis-driven monomer birth/death[J]. Chin. Phys., 2006, 15(8): 1896 -1902 .
[9] Li Cheng-Yue, J. P. Allain, Deng Bai-Quan. Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma[J]. Chin. Phys., 2007, 16(11): 3312 -3318 .
[10] Jiang Yong-Yuan, Shi Hong-Yan, Zhang Yong-Qiang, Hou Chun-Feng, Sun Xiu-Dong. Characteristics of surface waves in anisotropic left-handed materials[J]. Chin. Phys., 2007, 16(7): 1959 -1962 .