Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056301    DOI: 10.1088/1674-1056/ab8215
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Raman scattering study of two-dimensional magnetic van der Waals compound VI3

Yi-Meng Wang(王艺朦)1, Shang-Jie Tian(田尚杰)1, Cheng-He Li(李承贺)1, Feng Jin(金峰)2, Jian-Ting Ji(籍建葶)2, He-Chang Lei(雷和畅)1, Qing-Ming Zhang(张清明)2,3
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  The layered magnetic van der Waals materials have generated tremendous interest due to their potential applications and importance in fundamental research. Previous x-ray diffraction (XRD) studies on the magnetic van der Waals compound VI3, revealed a structural transition above the magnetic transition but output controversial analysis on symmetry. In this paper we carried out polarized Raman scattering measurements on VI3 from 10 K to 300 K, with focus on the two Ag phonon modes at ~ 71.1 cm-1 and 128.4 cm-1. Our careful symmetry analysis based on the angle-dependent spectra demonstrates that the crystal symmetry can be well described by C2h rather than D3d both above and below structural phase transition. We further performed temperature-dependent Raman experiments to study the magnetism in VI3. Fano asymmetry and anomalous linewidth drop of two Ag phonon modes at low temperatures, point to a significant spin-phonon coupling. This is also supported by the softening of 71.1-cm-1 mode above the magnetic transition. The study provides the fundamental information on lattice dynamics and clarifies the symmetry in VI3. And spin-phonon coupling existing in a wide temperature range revealed here may be meaningful in applications.
Keywords:  Raman scattering      two-dimensional magnetic van der Waals materials      lattice dynamics      magnetism  
Received:  08 February 2020      Revised:  09 March 2020      Published:  05 May 2020
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11774419, U1932215, 11774423, and 11822412), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (RUC) (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17).
Corresponding Authors:  Qing-Ming Zhang     E-mail:  qmzhang@ruc.edu.cn

Cite this article: 

Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明) Raman scattering study of two-dimensional magnetic van der Waals compound VI3 2020 Chin. Phys. B 29 056301

[1] Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
[2] Jin W C, Kim H H, Ye Z P, Li S W, Rezaie P, Diaz F, Siddiq S, Wauer E, Yang B, Li C H, Tian S J, Sun K, Lei H C, Tsen A W, Zhao L Y and He R 2018 Nat. Comm. 9 5122
[3] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Hoh T W and Park J G 2016 Sci. Rep. 6 20904
[4] Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G and Cheong H 2019 Nat. Comm. 10 345
[5] Ozcan M, Ozen S, Yagmurcukardes M and Sahin H 2020 J. Magn. Magn. Mater. 493 165668
[6] McGuire M A 2017 Crystals 7 121
[7] Iyikanat F, Yagmurcukardes M, Senger R T and Sahin H 2018 J. Mater. Chem. C 6 2019
[8] Wang M X, Zhang J, Wang Z P, Wang C, van Smaalen S, Xiao H, Chen X, Du C L, Xu X G and Tao X T 2019 Adv. Opt. Mater. 8 901446
[9] Angelkort J, Wölfel A, Schönleber A, Smaalen S V and Kremer K R 2009 Phys. Rev. B 80 144416
[10] Bykov M, Bykova E, Dubrovinsky L, Hanfland M, Liermann H P and Smaalen S V 2015 Sci. Rep. 5 9647
[11] Miao N H, Xu B, Zhu L G, Zhou J and Sun Z M 2018 J. Am. Chem. Soc. 140 2417
[12] Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M and Qu Z 2019 ACS Nano 13 11353
[13] Lee J, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C, Park J and Cheong H 2016 Nano Lett. 16 7433
[14] Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
[15] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[16] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738
[17] Frindt R F, Yang D and Westreich P 2005 J. Mater. Res. 20 1107
[18] Juza D, Giegling D and Schäfer H 1969 Z. Anorg. Allg. Chem. 366 121
[19] Dillon J and Olson C 1965 J. Appl. Phys. 36 1259
[20] Wilson J, Maule C, Strange P and Tothill J 1987 J. Phys. C 20 4159
[21] Starr C, Bitter F and Kaufmann A R 1940 Phys. Rev. 58 977
[22] Zhou Y G, Lu H F, Zu X T and Gao F 2016 Sci. Rep. 6 19407
[23] He J, Ma S, Lyu P and Nachtigall P 2016 J. Mater. Chem. C 4 2518
[24] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[25] Lado J L and Fernández R J 2017 2D Mater. 4 035002
[26] Zhong D, Seyler K L, Xia Y, Lin P, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Wang Y, Xiao D, Fu C K M and Xu X D 2017 Sci. Adv. 3 e1603113
[27] Tian S, Zhang J F, Li C, Ying T, Li S, Zhan X, Liu K and Lei H 2019 J. Am. Chem. Soc. 141 5326
[28] Kong T, Stolze K, Timmons E I, Tan J, Ni D, Guo S, Yang Z, Prozorov R and Cava R J 2019 Adv. Mater. 31 1808074
[29] Son S, Coak M J, Lee N, Kim J, Kim T Y, Hamidov H, Cho H, Liu C, Jarvis D M, Brown P A C, Kim J H, Park C, Khomskii D I, Saxena S S and Park J 2019 Phys. Rev. B 99 041402
[30] Liu Y, Abeykoon M and Petrovic C 2020 Phys. Rev. Res. 2 013013
[31] An M, Zhang Y, Chen J, Zhang H M, Guo Y and Dong S 2019 J. Phys. Chem. C 123 30545
[32] Askurt M, Eren I, Yagmurcukardes M and Sahin H 2020 Appl. Surf. Sci. 508 144937
[33] Larson D T and Kaxiras E 2018 Phys. Rev. B 98 085406
[34] Djurdjić-Mijin S, Šolajić A, PeŠić J, Šćepanović M, Liu Y, Baum A, Petrovic C, Lazarevi ć N and Popovi ć Z V 2018 Phys. Rev. B 98 104307
[35] Wang Y M, Zhang J F, Li C C, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L and Zhang Q M 2019 Chin. Phy. B 28 056301
[36] Djokić D M, Popović Z V and Vukajlović F R 2008 Phys. Rev. B 77 014305
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[3] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[4] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[5] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[6] Microstructure and ferromagnetism ofheavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[7] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[8] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[9] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[10] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[13] Electronic and magnetic properties of CrI3 nanoribbons and nanotubes
Ji-Zhang Wang(王吉章), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 077301.
[14] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[15] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
No Suggested Reading articles found!