Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097504    DOI: 10.1088/1674-1056/ac1338
RAPID COMMUNICATION Prev   Next  

Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate

Guangyi Chen(陈光毅)1, Yu Zhang(张玉)2, Shaomian Qi(齐少勉)1, and Jian-Hao Chen(陈剑豪)1,2,3,4,†
1 International Center of Quantum Material, School of Physics, Peking University, Beijing 100871, China;
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
3 Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China;
4 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
Abstract  Since the discovery of magnetism in two dimensions, effective manipulation of magnetism in van der Waals magnets has always been a crucial goal. Ionic gating is a promising method for such manipulation, yet devices gated with conventional ionic liquid may have some restrictions in applications due to the liquid nature of the gate dielectric. Lithium-ion conducting glass-ceramics (LICGC), a solid Li+ electrolyte, could be used as a substrate while simultaneously acts as a promising substitute for ionic liquid. Here we demonstrate that the ferromagnetism of Fe3GeTe2 (FGT) could be modulated via LICGC. By applying a voltage between FGT and the back side of LICGC substrate, Li+ doping occurs and causes the decrease of the coercive field (Hc) and ferromagnetic transition temperature (Tc) in FGT nanoflakes. A modulation efficiency for Hc of up to ~ 24.6% under Vg = 3.5 V at T =100 K is achieved. Our results provide another method to construct electrically-controlled magnetoelectronics, with potential applications in future information technology.
Keywords:  two-dimensional magnetism      two-dimensional material      ionic gating  
Received:  29 June 2021      Revised:  03 July 2021      Accepted manuscript online:  12 July 2021
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  85.70.-w (Magnetic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308402 and 2018YFA0305604), the National Natural Science Foundation of China (Grant Nos. 11934001, 11774010, and 11921005), and Beijing Municipal Natural Science Foundation, China (Grant No. JQ20002).
Corresponding Authors:  Jian-Hao Chen     E-mail:  chenjianhao@pku.edu.cn

Cite this article: 

Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪) Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate 2021 Chin. Phys. B 30 097504

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[3] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[4] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[5] Wang Z, Zhang T, Ding M, et al. 2018 Nat. Nanotechnol. 13 554
[6] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X 2018 Nat. Nanotechnol. 13 544
[8] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[9] Wang Z, Gutierrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoglu A, Giannini E and Morpurgo A F 2018 Nat. Commun. 9 2516
[10] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554
[11] Zhuang H L L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407
[12] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[13] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
[14] Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M H 2013 J. Phys. Soc. Jpn. 82 124711
[15] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 12 757
[16] Benedikt S, Xu G F, Alex M A and Igor Ž 2017 Phys. Rev. Lett. 119 127403
[17] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K C and Xu X 2017 Sci. Adv. 3 e1603113
[18] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501
[19] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504
[20] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802
[21] Liu L W, Hu C C, Xu Y C, Huang H B, Cao J W, Liang L and Rao W F 2018 Chin. Phys. B 27 077503
[22] Gong Y, Guo J, Li J, et al. 2019 Chin. Phys. Lett. 36 076801
[23] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503
[24] Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H and Li S Y 2018 Phys. Rev. Lett. 121 207003
[25] Song Y, Liang X, Guo J, Deng J, Gao G and Chen X 2019 Phys. Rev. B 3 054804
[26] Philippi M, Gutierrez-Lezama I, Ubrig N and Morpurgo A F 2018 Appl. Phys. Lett. 113 033502
[27] Alam M H, Xu Z, Chowdhury S, Jiang Z, Taneja D, Banerjee S K, Lai K, Braga M H and Akinwande D 2020 Nat. Commun. 11 3203
[28] Arihori K, Ogawa M, Souma S, Sato-Iwanaga J and Suzuki M A 2020 IEEE International Conference on Simulation of Semiconductor Processes and Devices, September 23-October 06, 2020, Hyogo, Japan, p. 367
[29] Wang H S, Liu Q Y, Feng X M, Zhang Z, Wang K, Liu Z J and Dai J F 2020 Mater. Res. Express 7 076302
[30] Zhou Z, Wu L M, Chen J C, Ma J J, Huang Y, Shen C M, Bao L H and Gao H J 2020 Chin. Phys. B 29 118501
[31] Kühne M, Zhao D, Zschieschang U, Buck R, Müller M, Klauk H and Smet J H 2020 Adv. Mater. Interfaces 8 2001453
[32] Alam M H, Chowdhury S, Roy A, Braga M H, Banerjee S K and Akinwande D 2021 Phys. Rev. B 5 054003
[33] Zhang X Y, Hen B, Palevski A and Kapitulnik A 2021 npj Quantum Mater. 6 30
[34] Pravarthana D, Wang B M, Mustafa Z, Agarwal S, Pei K, Yang H L and Li R W 2019 Phys. Rev. Appl. 12 054065
[35] Ohno H, Munekata H, Penney T, von Molnar S and Chang L L 1992 Phys. Rev. Lett. 68 2664
[1] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[2] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[3] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[4] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[5] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[6] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[7] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[8] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[9] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[12] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[13] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[14] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), and Gang Chen(陈刚)†. Chin. Phys. B, 2020, 29(10): 108103.
[15] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[1] LIU JIE, Chen Shi-gang, Bao De-hai. PHOTOIONIZATION IN AN INTENSE LASER FIELD[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(12): 881 -888 .
[2] SHI JUN-JIE. ELECTRON-INTERFACE PHONON SCATTERING IN ASYMMETRIC SEMICONDUCTOR QUANTUM WELL STRUCTURES[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(5): 356 -364 .
[3] Li Run-wei, Sun Ji-rong, Wang Zhi-hong, Chen Xin, Zhang Shao-ying, Shen Bao-gen. ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3[J]. Chin. Phys., 2000, 9(8): 630 -633 .
[4] Wang Xin, Lu Zu-hong, Deng Hui-hua, Yu Tsing, Mao Hai-fang, Suzuki Toshishige. SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA[J]. Chin. Phys., 2001, 10(13): 59 -64 .
[5] Huang Guo-Xiang. Second harmonic generation of propagating collective excitations in Bose-Einstein condensates[J]. Chin. Phys., 2004, 13(11): 1866 -1876 .
[6] Dai Shi-Xun, Zhang Jun-Jie, Li Shun-Guang, Xu Shi-Qing, Wang Guo-Nian, Yang Jian-Hu, Hu Li-Li. Comparative study of spectroscopic properties of Er3+/Yb3+-codoped tellurite glass and fibres under 980nm excitation[J]. Chin. Phys., 2004, 13(12): 2162 -2168 .
[7] Li De-Sheng, Zhang Hong-Qing. The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system[J]. Chin. Phys., 2004, 13(7): 984 -987 .
[8] Zheng Shi-Biao. Teleportation of atomic states with a weak coherent cavity field[J]. Chin. Phys., 2005, 14(9): 1825 -1827 .
[9] Zheng Shi-Wang, Tang Yi-Fa, Fu Jing-Li. Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems[J]. Chin. Phys., 2006, 15(2): 243 -248 .
[10] Sun Jian-Cheng, Zhou Ya-Tong, Luo Jian-Guo. Prediction of chaotic systems with multidimensional recurrent least squares support vector machines[J]. Chin. Phys., 2006, 15(6): 1208 -1215 .