Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097504    DOI: 10.1088/1674-1056/ac1338
RAPID COMMUNICATION Prev   Next  

Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate

Guangyi Chen(陈光毅)1, Yu Zhang(张玉)2, Shaomian Qi(齐少勉)1, and Jian-Hao Chen(陈剑豪)1,2,3,4,†
1 International Center of Quantum Material, School of Physics, Peking University, Beijing 100871, China;
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
3 Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China;
4 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
Abstract  Since the discovery of magnetism in two dimensions, effective manipulation of magnetism in van der Waals magnets has always been a crucial goal. Ionic gating is a promising method for such manipulation, yet devices gated with conventional ionic liquid may have some restrictions in applications due to the liquid nature of the gate dielectric. Lithium-ion conducting glass-ceramics (LICGC), a solid Li+ electrolyte, could be used as a substrate while simultaneously acts as a promising substitute for ionic liquid. Here we demonstrate that the ferromagnetism of Fe3GeTe2 (FGT) could be modulated via LICGC. By applying a voltage between FGT and the back side of LICGC substrate, Li+ doping occurs and causes the decrease of the coercive field (Hc) and ferromagnetic transition temperature (Tc) in FGT nanoflakes. A modulation efficiency for Hc of up to ~ 24.6% under Vg = 3.5 V at T =100 K is achieved. Our results provide another method to construct electrically-controlled magnetoelectronics, with potential applications in future information technology.
Keywords:  two-dimensional magnetism      two-dimensional material      ionic gating  
Received:  29 June 2021      Revised:  03 July 2021      Accepted manuscript online:  12 July 2021
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  85.70.-w (Magnetic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308402 and 2018YFA0305604), the National Natural Science Foundation of China (Grant Nos. 11934001, 11774010, and 11921005), and Beijing Municipal Natural Science Foundation, China (Grant No. JQ20002).
Corresponding Authors:  Jian-Hao Chen     E-mail:  chenjianhao@pku.edu.cn

Cite this article: 

Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪) Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate 2021 Chin. Phys. B 30 097504

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[3] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[4] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[5] Wang Z, Zhang T, Ding M, et al. 2018 Nat. Nanotechnol. 13 554
[6] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X 2018 Nat. Nanotechnol. 13 544
[8] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[9] Wang Z, Gutierrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoglu A, Giannini E and Morpurgo A F 2018 Nat. Commun. 9 2516
[10] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554
[11] Zhuang H L L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407
[12] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[13] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
[14] Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M H 2013 J. Phys. Soc. Jpn. 82 124711
[15] Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotechnol. 12 757
[16] Benedikt S, Xu G F, Alex M A and Igor Ž 2017 Phys. Rev. Lett. 119 127403
[17] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K C and Xu X 2017 Sci. Adv. 3 e1603113
[18] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501
[19] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504
[20] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802
[21] Liu L W, Hu C C, Xu Y C, Huang H B, Cao J W, Liang L and Rao W F 2018 Chin. Phys. B 27 077503
[22] Gong Y, Guo J, Li J, et al. 2019 Chin. Phys. Lett. 36 076801
[23] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B 95 020503
[24] Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H and Li S Y 2018 Phys. Rev. Lett. 121 207003
[25] Song Y, Liang X, Guo J, Deng J, Gao G and Chen X 2019 Phys. Rev. B 3 054804
[26] Philippi M, Gutierrez-Lezama I, Ubrig N and Morpurgo A F 2018 Appl. Phys. Lett. 113 033502
[27] Alam M H, Xu Z, Chowdhury S, Jiang Z, Taneja D, Banerjee S K, Lai K, Braga M H and Akinwande D 2020 Nat. Commun. 11 3203
[28] Arihori K, Ogawa M, Souma S, Sato-Iwanaga J and Suzuki M A 2020 IEEE International Conference on Simulation of Semiconductor Processes and Devices, September 23-October 06, 2020, Hyogo, Japan, p. 367
[29] Wang H S, Liu Q Y, Feng X M, Zhang Z, Wang K, Liu Z J and Dai J F 2020 Mater. Res. Express 7 076302
[30] Zhou Z, Wu L M, Chen J C, Ma J J, Huang Y, Shen C M, Bao L H and Gao H J 2020 Chin. Phys. B 29 118501
[31] Kühne M, Zhao D, Zschieschang U, Buck R, Müller M, Klauk H and Smet J H 2020 Adv. Mater. Interfaces 8 2001453
[32] Alam M H, Chowdhury S, Roy A, Braga M H, Banerjee S K and Akinwande D 2021 Phys. Rev. B 5 054003
[33] Zhang X Y, Hen B, Palevski A and Kapitulnik A 2021 npj Quantum Mater. 6 30
[34] Pravarthana D, Wang B M, Mustafa Z, Agarwal S, Pei K, Yang H L and Li R W 2019 Phys. Rev. Appl. 12 054065
[35] Ohno H, Munekata H, Penney T, von Molnar S and Chang L L 1992 Phys. Rev. Lett. 68 2664
[1] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[2] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[3] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[4] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[5] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[6] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[7] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[8] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[9] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[10] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[11] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[12] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[13] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[14] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[15] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[1] XIA HUA, ZHANG WEI, HU AN, JIANG SHU-SHENG, ZHANG XING-KUI. BRILLOUIN LIGHT-SCATTERING INVESTIGATION OF ELASTIC ANOMALY FROM SUPERLATTICES[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(2): 141 -149 .
[2] WANG XIAO-GUANG, SUN CHANG-PU. HIGHER-ORDER CORRECTION FOR ROTATING WAVE APPROXIMATION, RABI TRANSFORMATION, AND ITS APPLICATIONS IN THE JAYNES-CUMMINGS MODEL[J]. Chin. Phys. B, 1996, 5(12): 881 -889 .
[3] ZHANG WEI. FURTHER STUDIES ON NONLINEAR DYNAMICS OF ONE DIMENSIONAL CRYSTALLINE BEAM[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(6): 409 -422 .
[4] Zhang Ying-Qiao(张英俏), Jin Xing-Ri(金星日), and Zhang Shou(张寿). Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators[J]. Chin. Phys. B, 2008, 17(2): 424 -430 .
[5] Wang Ji-Suo(王继锁) and Meng Xiang-Guo(孟祥国). Wigner functions and tomograms of the photon-depleted even and odd coherent states[J]. Chin. Phys. B, 2008, 17(4): 1254 -1262 .
[6] Chen Yong-Sheng (陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Gu Jin-Hua(谷景华), Zheng Wen(郑文), and Zhao Shang-Li(赵尚丽) . Effects of deposition pressure and plasma power on the growth and properties of boron-doped microcrystalline silicon films[J]. Chin. Phys. B, 2008, 17(4): 1394 -1399 .
[7] Mo Jia-Qi. Approximation of the soliton solution for the generalized Vakhnenko equation[J]. Chin. Phys. B, 2009, 18(11): 4608 -4612 .
[8] Li Yuan-Cheng(李元成), Xia Li-Li(夏丽莉), and Wang Xiao-Ming(王小明) . Conformal invariance and generalized Hojman conserved quantities of mechanico-electrical systems[J]. Chin. Phys. B, 2009, 18(11): 4643 -4649 .
[9] Shen Li(沈礼),Wang Lei(汪磊),Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军),andLiu Hong-Ping(刘红平) . Tunneling between double wells of atom in crossed electromagnetic fields[J]. Chin. Phys. B, 2009, 18(12): 5277 -5282 .
[10] Wang Hai-Jun(王海军) and Gao Yun-Feng(高云峰) . Effect of cavity dissipation on the emission spectrum of an atom interacting with a field in the dispersive approximation[J]. Chin. Phys. B, 2010, 19(1): 14209 -014209 .