Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1994, Vol. 3(4): 241-249    DOI: 10.1088/1004-423X/3/4/001
GENERAL   Next  

INFINITELY MANY SYMMETRIES OF THE BILINEAR KADOMTSEV-PETVIASHVILI EQUATION

LOU SEN-YUE (楼森岳)a, LIN JI (林机)b, ZHANG JIE-FANG (张解放)b, XU XUE-JUN (许学军)b
a Institute of Modern Physics, Ningbo Normal College, Ningbo 315211, China and Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China; b Department of Physics, Zhejiang Normal University, Jinghua 321004, China
Abstract  A simple formula for symmetries of the bilinear Kadomtsev- Petviashvili equation (BKPE) is given by using a direct method presented by Lou. The symmetry algebra of the BKPE is not isomorphic to those of the usual KP equation though these equations are related by the well known Cole-Hopf transformation.
Received:  15 June 1993      Accepted manuscript online: 
PACS:  11.30.-j (Symmetry and conservation laws)  
  02.10.Ud (Linear algebra)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.

Cite this article: 

LOU SEN-YUE (楼森岳), LIN JI (林机), ZHANG JIE-FANG (张解放), XU XUE-JUN (许学军) INFINITELY MANY SYMMETRIES OF THE BILINEAR KADOMTSEV-PETVIASHVILI EQUATION 1994 Acta Physica Sinica (Overseas Edition) 3 241

[1] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[2] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[3] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[4] Conservation laws for Birkhoffian systems of Herglotz type
Yi Zhang(张毅), Xue Tian(田雪). Chin. Phys. B, 2018, 27(9): 090502.
[5] An application of a combined gradient system to stabilize a mechanical system
Xiang-Wei Chen(陈向炜), Ye Zhang(张晔), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(10): 100201.
[6] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[7] Electron with arbitrary pseudo-spins in multilayer graphene
Worasak Prarokijjak, Bumned Soodchomshom. Chin. Phys. B, 2015, 24(4): 048101.
[8] Conservation laws of the generalized short pulse equation
Zhang Zhi-Yong (张智勇), Chen Yu-Fu (陈玉福). Chin. Phys. B, 2015, 24(2): 020201.
[9] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[10] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[11] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[12] Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients
Jing Jian-Chun (荆建春), Li Biao (李彪). Chin. Phys. B, 2013, 22(1): 010303.
[13] A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints
Han Yue-Lin (韩月林), Sun Xian-Ting (孙现亭), Wang Xiao-Xiao (王肖肖), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(12): 120201.
[14] Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives
Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2012, 21(10): 100202.
[15] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(10): 100203.
No Suggested Reading articles found!