ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping |
Da-Wei Li(李大为)1,4, Tao Wang(王韬)2,†, Xiao-Lei Yin(尹晓蕾)3, Li Wang(王利)1, Jia-Mei Li(李佳美)1,4, Hui Yu(余惠)1,4, Yong Cui(崔勇)2, Tian-Xiong Zhang(张天雄)2, Xing-Qiang Lu(卢兴强)1,‡, and Guang Xu(徐光)1 |
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Shanghai Institute of Laser Plasma, Chinese Academy of Engineering Physics, Shanghai 201800, China; 3 Changzhou Institute of Technology, School of Sciences, Changzhou 213032, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spectral shaping, which uses the existing Nd:glass amplifier chain of the SG PW laser. Compared to the amplified pulse with a gain-narrowing effect, the required parameters of injected pulse energy, spectral bandwidth, and shape are analyzed, together with their influence on the system B-integral, energy output capability, and temporal intensity contrast. A bandwidth expansion to 7 nm by using LiNbO3 birefringent spectral shaping resulted in an output energy of 2 kJ in a proof-of-principle experiment. The results are consistent with the theoretical prediction which suggests that the amplifier chain of SG PW laser is capable of achieving 6 kJ at the bandwidth of 7 nm and the B-integral < π . This will support a 10 PW laser with a compressed pulse energy of 4.8 kJ (efficiency=80%) at 480 fs.
|
Received: 30 December 2021
Revised: 10 March 2022
Accepted manuscript online: 23 March 2022
|
PACS:
|
42.40.My
|
(Applications)
|
|
42.25.Lc
|
(Birefringence)
|
|
42.15.Eq
|
(Optical system design)
|
|
Fund: Project supported by the International Partnership Program of Chinese Academy of Sciences (Grant No. 181231KYSB20170022) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 20KJB140020). |
Corresponding Authors:
Tao Wang, Xing-Qiang Lu
E-mail: twang@siom.ac.cn;xingqianglu@siom.ac.cn
|
Cite this article:
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光) Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping 2022 Chin. Phys. B 31 094210
|
[1] Spaeth M L, Manes K R, Kalantar D H, et al. 2016 Fusion Science and Technology 69 25 [2] Miquel J L and Prene E 2019 Nucl. Fusion 59 032005 [3] Waxer L J, Maywar D N, Kelly J H, Kessler T J, Kruschwitz B E, Loucks S J, McCrory R L, Meyerhofer D D, Morse S F B, Stoeckl C and Zuegel J D 2005 Optics and Photonics News 16 30 [4] Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55 [5] Miyanaga N, Azechi H, Tanaka K A, Kanabe T, Jitsuno T, Kawanaka J, Fujimoto Y, Kodama R, Shiraga H, Knodo K, Tsubakimoto K, Habara H, Lu J, Xu G, Morio N, Matsuo S, Miyaji E, Kawakami Y, Izawa Y and Mima K 2006 J. Phys. IV France 133 81 [6] Key M H, Cowan T E, Hammel B A, et al. 1998 17th International Atomic Energy Agency Fusion Energy Conference, October 19-24, 1998, Yokohama, Japan (to be published) [7] Stephens R B, Cowan T E, Freeman R R, Hatchett S P, Key M H, Koch J A, Lee R W, MacKinnon A, Pennington D, Snavely R, Tabak M and Yasuike K 2000 The 18th Fusion Energy Conference, October 4-10, 2000, Sorrento, Italy, IFP-10 [8] Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A. 378 20200015 [9] Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, MacGowan B J, Miller G H, Rardin D C, Roberts V S, Van Wonterghem B M and Wegner P J 2016 Fusion Sci. Technol. 69 1 [10] Mariscal D, Ma T, Wilks S, et al. 2019 Phys. Plasmas 26 043110 [11] Williams G J, Link A, Sherlock M, et al. 2020 Phys. Rev. E 101 031201 [12] Hornung J, Zobus Y, Boller P, Brabetz C, Eisenbarth U, Kuhl T, Major Zs, Ohland J B, Zepf M, Zielbauer B and Bagnoud V 2020 High Power Laser Sci. Eng. 8 e24 [13] Chuang Y H, Zheng L and Meyerhofer D D 1993 IEEE J. Q. E. 29 270 [14] Kitagawa Y, Fujita H, Kodama R, Yoshida H, Matsuo S, Jitsuno T, Kawasaki T, Kitamura H, Kanabe T, Sakabe S, Shigemori K, Miyanaga N and Izawa Y 2004 IEEE J. Q. E. 40 281 [15] Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M and Yanovsky V 1999 Opt. Lett. 24 160 [16] Blanchot N, Bignon E, Coic H, et al. 2006 Proc. SPIE 5975 59750 [17] Williams W H, Crane J K, Alessi D A, et al. 2021 Appl. Opt. 60 2288 [18] Liu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Guo Y, Yuan X D, Peng Z T and Tang X D 2005 Acta Phys. Sin. 54 2764 (in Chinese) [19] Mansuryan T, Kalashyan M, Lhermite J, et al. 2011 Opt. Lett. 36 1635 [20] Batysta F, Antipenkov R, Borger T, Kissinger A, Green J T, Kananavičius R, Chériaux G, Hidinger D, Kolenda J, Gaul E, Rus B and Ditmire T 2018 Opt. Lett. 43 3866 [21] Lureau F, Matras G, Chalus O, et al. 2020 High Power Laser Sci. Eng. 8 e43 [22] Preuss D R and Gole J L 1980 Appl. Opt. 19 702 [23] Heebner J E, Acree R L Jr, Alessi D A, et al. 2019 Appl. Opt. 58 8501 [24] Di Nicola J M, Yang S T, Boley C D, et al. 2015 Proc. SPIE 9345 934501 [25] Gaul E W, Martinez M, Blakeney J, et al. 2010 Appl. Opt. 49 1676 [26] Siders C W, Jovanovic I, Crane J, et al. 2006 International Conference on Ultrahigh Intensity Lasers, September 25-29, 2006, Cassis, France, UCRL-CONF-222421 [27] Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y and Zhu J 2008 Review of Laser Engineering 36 1172 [28] Lv B D and Zhang B 1996 Opt. Commun. 130 279 [29] Chu X L, Zhang B, Cai B W, Wei X F, Zhu Q H, Huang X J, Yuan X D, et al. 2005 Acta Phys. Sin. 54 4696 (in Chinese) [30] Zhu X N 1994 Appl. Opt. 33 3502 [31] Zhu S D 1990 Appl. Opt. 29 410 [32] Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J and Xu Y C 2011 Proceeding of International Symposium on Advanced Glass Melting Technology, May 8-10, 2011, Shanghai, China, p. 87 (in Chinese) [33] Hu J J, Zhang L Y, Ni J C, Meng T and Hu L L 2020 Chin. Opt. Lett. 18 091402 [34] Perry M D, Patterson F G and Weston J 1990 Opt. Lett. 15 381 [35] Chuang Y H, Meyerhofer D D, Augst S, Chen H, Peatross J and Uchida S 1991 J. Opt. Soc. Amer. B 8 1226 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|