Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094210    DOI: 10.1088/1674-1056/ac6018
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping

Da-Wei Li(李大为)1,4, Tao Wang(王韬)2,†, Xiao-Lei Yin(尹晓蕾)3, Li Wang(王利)1, Jia-Mei Li(李佳美)1,4, Hui Yu(余惠)1,4, Yong Cui(崔勇)2, Tian-Xiong Zhang(张天雄)2, Xing-Qiang Lu(卢兴强)1,‡, and Guang Xu(徐光)1
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Shanghai Institute of Laser Plasma, Chinese Academy of Engineering Physics, Shanghai 201800, China;
3 Changzhou Institute of Technology, School of Sciences, Changzhou 213032, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spectral shaping, which uses the existing Nd:glass amplifier chain of the SG PW laser. Compared to the amplified pulse with a gain-narrowing effect, the required parameters of injected pulse energy, spectral bandwidth, and shape are analyzed, together with their influence on the system B-integral, energy output capability, and temporal intensity contrast. A bandwidth expansion to 7 nm by using LiNbO3 birefringent spectral shaping resulted in an output energy of 2 kJ in a proof-of-principle experiment. The results are consistent with the theoretical prediction which suggests that the amplifier chain of SG PW laser is capable of achieving 6 kJ at the bandwidth of 7 nm and the B-integral < π . This will support a 10 PW laser with a compressed pulse energy of 4.8 kJ (efficiency=80%) at 480 fs.
Keywords:  SG PW laser      bandwidth expansion      B-integral      spectral shaping  
Received:  30 December 2021      Revised:  10 March 2022      Accepted manuscript online:  23 March 2022
PACS:  42.40.My (Applications)  
  42.25.Lc (Birefringence)  
  42.15.Eq (Optical system design)  
Fund: Project supported by the International Partnership Program of Chinese Academy of Sciences (Grant No. 181231KYSB20170022) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 20KJB140020).
Corresponding Authors:  Tao Wang, Xing-Qiang Lu     E-mail:  twang@siom.ac.cn;xingqianglu@siom.ac.cn

Cite this article: 

Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光) Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping 2022 Chin. Phys. B 31 094210

[1] Spaeth M L, Manes K R, Kalantar D H, et al. 2016 Fusion Science and Technology 69 25
[2] Miquel J L and Prene E 2019 Nucl. Fusion 59 032005
[3] Waxer L J, Maywar D N, Kelly J H, Kessler T J, Kruschwitz B E, Loucks S J, McCrory R L, Meyerhofer D D, Morse S F B, Stoeckl C and Zuegel J D 2005 Optics and Photonics News 16 30
[4] Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55
[5] Miyanaga N, Azechi H, Tanaka K A, Kanabe T, Jitsuno T, Kawanaka J, Fujimoto Y, Kodama R, Shiraga H, Knodo K, Tsubakimoto K, Habara H, Lu J, Xu G, Morio N, Matsuo S, Miyaji E, Kawakami Y, Izawa Y and Mima K 2006 J. Phys. IV France 133 81
[6] Key M H, Cowan T E, Hammel B A, et al. 1998 17th International Atomic Energy Agency Fusion Energy Conference, October 19-24, 1998, Yokohama, Japan (to be published)
[7] Stephens R B, Cowan T E, Freeman R R, Hatchett S P, Key M H, Koch J A, Lee R W, MacKinnon A, Pennington D, Snavely R, Tabak M and Yasuike K 2000 The 18th Fusion Energy Conference, October 4-10, 2000, Sorrento, Italy, IFP-10
[8] Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A. 378 20200015
[9] Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, MacGowan B J, Miller G H, Rardin D C, Roberts V S, Van Wonterghem B M and Wegner P J 2016 Fusion Sci. Technol. 69 1
[10] Mariscal D, Ma T, Wilks S, et al. 2019 Phys. Plasmas 26 043110
[11] Williams G J, Link A, Sherlock M, et al. 2020 Phys. Rev. E 101 031201
[12] Hornung J, Zobus Y, Boller P, Brabetz C, Eisenbarth U, Kuhl T, Major Zs, Ohland J B, Zepf M, Zielbauer B and Bagnoud V 2020 High Power Laser Sci. Eng. 8 e24
[13] Chuang Y H, Zheng L and Meyerhofer D D 1993 IEEE J. Q. E. 29 270
[14] Kitagawa Y, Fujita H, Kodama R, Yoshida H, Matsuo S, Jitsuno T, Kawasaki T, Kitamura H, Kanabe T, Sakabe S, Shigemori K, Miyanaga N and Izawa Y 2004 IEEE J. Q. E. 40 281
[15] Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M and Yanovsky V 1999 Opt. Lett. 24 160
[16] Blanchot N, Bignon E, Coic H, et al. 2006 Proc. SPIE 5975 59750
[17] Williams W H, Crane J K, Alessi D A, et al. 2021 Appl. Opt. 60 2288
[18] Liu L Q, Peng H S, Wei X F, Zhu Q H, Huang X J, Wang X D, Zhou K N, Zeng X M, Wang X, Guo Y, Yuan X D, Peng Z T and Tang X D 2005 Acta Phys. Sin. 54 2764 (in Chinese)
[19] Mansuryan T, Kalashyan M, Lhermite J, et al. 2011 Opt. Lett. 36 1635
[20] Batysta F, Antipenkov R, Borger T, Kissinger A, Green J T, Kananavičius R, Chériaux G, Hidinger D, Kolenda J, Gaul E, Rus B and Ditmire T 2018 Opt. Lett. 43 3866
[21] Lureau F, Matras G, Chalus O, et al. 2020 High Power Laser Sci. Eng. 8 e43
[22] Preuss D R and Gole J L 1980 Appl. Opt. 19 702
[23] Heebner J E, Acree R L Jr, Alessi D A, et al. 2019 Appl. Opt. 58 8501
[24] Di Nicola J M, Yang S T, Boley C D, et al. 2015 Proc. SPIE 9345 934501
[25] Gaul E W, Martinez M, Blakeney J, et al. 2010 Appl. Opt. 49 1676
[26] Siders C W, Jovanovic I, Crane J, et al. 2006 International Conference on Ultrahigh Intensity Lasers, September 25-29, 2006, Cassis, France, UCRL-CONF-222421
[27] Xu G, Wang T, Li Z Y, Dai Y P, Lin Z Q, Gu Y and Zhu J 2008 Review of Laser Engineering 36 1172
[28] Lv B D and Zhang B 1996 Opt. Commun. 130 279
[29] Chu X L, Zhang B, Cai B W, Wei X F, Zhu Q H, Huang X J, Yuan X D, et al. 2005 Acta Phys. Sin. 54 4696 (in Chinese)
[30] Zhu X N 1994 Appl. Opt. 33 3502
[31] Zhu S D 1990 Appl. Opt. 29 410
[32] Tang J P, Hu L L, Chen S B, Wang B, Jiang Y S, He D B, Zhang J Z, Li S G, Hu J J and Xu Y C 2011 Proceeding of International Symposium on Advanced Glass Melting Technology, May 8-10, 2011, Shanghai, China, p. 87 (in Chinese)
[33] Hu J J, Zhang L Y, Ni J C, Meng T and Hu L L 2020 Chin. Opt. Lett. 18 091402
[34] Perry M D, Patterson F G and Weston J 1990 Opt. Lett. 15 381
[35] Chuang Y H, Meyerhofer D D, Augst S, Chen H, Peatross J and Uchida S 1991 J. Opt. Soc. Amer. B 8 1226
[1] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[2] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[3] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[4] Macadam's theory in RGB laser display
Guan Wang(王贯), Yuhua Yang(杨雨桦), Tianhao Dong(董天浩), Chun Gu(顾春), Lixin Xu(许立新), Zhongcan Ouyang(欧阳钟灿), Zuyan Xu(许祖彦). Chin. Phys. B, 2019, 28(6): 064209.
[5] Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography
Ying Wang(王莹), Qi Liu(刘琦), Jun Wang(王君), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2018, 27(3): 034202.
[6] Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films
Hong-Yue Gao(高洪跃), Pan Liu(刘攀), Chao Zeng(曾超), Qiu-Xiang Yao(姚秋香), Zhiqiang Zheng(郑志强), Jicheng Liu(刘吉成), Huadong Zheng(郑华东), Ying-Jie Yu(于瀛洁), Zhen-Xiang Zeng(曾震湘), Tao Sun(孙涛). Chin. Phys. B, 2016, 25(9): 094205.
[7] Optical properties of the electromagnetic waves propagating in an elliptical cylinder multilayer structure
A. Abdoli-Arani. Chin. Phys. B, 2014, 23(3): 034211.
[8] Photoluminescence degradation mechanism of BaMgAl10O17:Eu2+ phosphor by vacuum ultraviolet irradiation
Zhang Jia-Chi (张加驰), Zhou Mei-Jiao (周美娇), Wang Yu-Hua (王育华). Chin. Phys. B, 2012, 21(12): 124102.
No Suggested Reading articles found!