|
|
Nonsequential double ionization of nonaligned diatomic molecules N2 and O2 |
Jia Xin-Yan (贾欣燕)a, Fan Dai-He (樊代和)a, Li Wei-Dong (李卫东)b, Chen Jing (陈京)c d |
a Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031, China; b Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China; c HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China; d Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Nonsequential double ionization (NSDI) processes of nonaligned diatomic molecules N2 and O2 are studied using the S-matrix theory. Our results show that the NSDI process significantly depends on the molecular symmetry and structure. The ratio of NSDI rate to single ionization rate as a function of the field intensity is obtained. It is found that N2 behaves closely to its companion atom Ar in the ratios over the entire intensity range, while O2 exhibits an obvious suppression effect, which is qualitatively consistent with the experiment.
|
Received: 23 February 2012
Revised: 01 June 2012
Accepted manuscript online:
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074026, 11074155, and 11104225), the NCET of the Ministry of Education of China (Grant No. NCET-08-0883), and the National Basic Research Program of China (Grant No. 2011CB808100). |
Corresponding Authors:
Li Wei-Dong, Chen Jing
E-mail: wdli@sxu.edu.cn; chen_jing@iapcm.ac.cn
|
Cite this article:
Jia Xin-Yan (贾欣燕), Fan Dai-He (樊代和), Li Wei-Dong (李卫东), Chen Jing (陈京) Nonsequential double ionization of nonaligned diatomic molecules N2 and O2 2013 Chin. Phys. B 22 013303
|
[1] |
L'Huillier A, Lompre L A, Mainfray G and Manus C 1983 Phys. Rev. A 27 2503
|
[2] |
Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642
|
[3] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[4] |
Walker B, Sheehy B, Dimauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
|
[5] |
Kuchiev M Yu 1995 J. Phys. B 28 5093
|
[6] |
Becker A and Faisal F H M 1996 J. Phys. B 29 L197
|
[7] |
Becker A and Faisal F H M 1999 J. Phys. B 32 L335
|
[8] |
Goreslavskii S P, Popruzhenko S V, Kopold R and Becker W 2001 Phys. Rev. A 64 053402
|
[9] |
Zhao Z X, Tong X M and Lin C D 2003 Phys. Rev. A 67 043404
|
[10] |
Chen J, Chu S I and Liu J 2006 J. Phys. B 39 4747
|
[11] |
Busuladzic M, Gazibegovic-Busuladzic A, Milosevic D B and Becker W 2008 Phys. Rev. Lett. 100 203003
|
[12] |
Okunishi M, Itaya R, Shimada K, Prumper G, Ueda K, Busuladzic M, Gazibegovic-Busuladzic A, Milosevic D B and Becker W 2009 Phys. Rev. Lett. 103 043001
|
[13] |
Li Y, Jia X Y, Yang S P, Li W D and Chen J 2010 Chin. Phys. B 19 063302
|
[14] |
Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J and Cheng Y 2010 Phys. Rev. Lett. 104 203001
|
[15] |
Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[16] |
Niikura H, Legare F, Hasbani R, Bandrauk A D, Ivanov M Y, Villeneuve D M and Corkum P B 2002 Nature 417 917
|
[17] |
Tong X M, Zhao Z X and Lin C D 2003 Phys. Rev. Lett. 91 233203
|
[18] |
Niikura H, Legare F, Hasbani R, Ivanov M Y, Villeneuve D M and Corkum P B 2003 Nature 421 826
|
[19] |
Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chirila C C, Lein M, Tisch J W G and Marangos J P 2006 Science 312 424
|
[20] |
Guo C, Li M, Nibarger J P and Gibson G N 1998 Phys. Rev. A 58 R4271
|
[21] |
Cornaggia C and Hering Ph 2000 Phys. Rev. A 62 023403
|
[22] |
Bhardwaj V R, Rayner D M, Villeneuve D M and Corkum P B 2001 Phys. Rev. Lett. 87 253003
|
[23] |
Alnaser A S, Osipov T, Benis E P, Wech A, Shan B, Cocke C L, Tong X M and Lin C D 2003 Phys. Rev. Lett. 91 163002
|
[24] |
Eremina E, Liu X, Rottke H, Sandner W, Schatzel M G, Dreischuh A, Paulus G G, Walther H, Moshammer R and Ullrich J 2004 Phys. Rev. Lett. 92 173001
|
[25] |
Chen J, Fan J, Li Y and Yang S P 2007 Phys. Rev. A 76 013418
|
[26] |
Liu J, Ye D F, Chen J and Liu X 2007 Phys. Rev. Lett. 99 013003
|
[27] |
Li Y, Chen J, Yang S P and Liu J 2007 Phys. Rev. A 76 023401
|
[28] |
Figueira de Morisson Faria C, Shaaran T, Liu X and Yang W 2008 Phys. Rev. A 78 043407
|
[29] |
Jia X Y, Li W D, Fan J, Liu J and Chen J 2008 Phys. Rev. A 77 063407
|
[30] |
Jia X Y, Li W D, Liu J and Chen J 2009 Phys. Rev. A 80 053405
|
[31] |
Gibson G N, Freeman R R and McIllrath T J 1991 Phys. Rev. Lett. 67 1230
|
[32] |
Walsh T D G, Decker J E and Chin S L 1994 J. Phys. B 26 L85
|
[33] |
Walsh T D G, Ilkov F A, Decker J E and Chin S L 1994 J. Phys. B 27 3767
|
[34] |
Böhm J M, Becker A and Faisal F H M 2000 Phys. Rev. Lett. 85 2280
|
[35] |
Becker A and Faisal F H M 2005 J. Phys. B 38 R1
|
[36] |
Usachenko V I and Chu S I 2005 Phys. Rev. A 71 063410
|
[37] |
Levine I N 1974 Quantum Chemistry (New Jersey: Prentice Hall) p. 386
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|