CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Intersubband transitions in InxAl(1-x)N/InyGa(1-y)Nquantum well operating at 1.55 μm |
Hassen Dakhlaoui |
Department of Physics, College of Science for Girls, Dammam 31113, Saudi Arabia |
|
|
Abstract In this paper, we theoretically study the effects of doping concentration ND and an external electric field on the intersubband transitions in InxAl(1-x)N/InyGa(1-y)N single quantum well by solving the Schrödinger and Poisson equations self-consistently. Obtained results including transition energies, the band structure, and the optical absorption have been discussed. The lowest three intersubband transitions (E2-E1), (E3-E1), and (E3-E2) are calculated as functions of doping concentration ND. By increasing the doping concentration ND, the depletion effect can be reduced, and the ionized electrons will compensate the internal electric field which results from the spontaneous polarization. Our results show that an optimum concentration ND exists for which the transition 0.8 eV (1.55 μm) is carried out. Finally, the dependence of the optical absorption α 13 (ω) on the external electric field and doping concentration is studied. The maximum of the optical absorption can be red-shifted or blue-shifted through varying the doping concentration and the external electric field. The obtained results can be used for designing optical fiber telecommunications operating at 1.55 μm.
|
Received: 27 January 2014
Revised: 31 March 2014
Accepted manuscript online:
|
PACS:
|
73.21.Fg
|
(Quantum wells)
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
Corresponding Authors:
Hassen Dakhlaoui
E-mail: h_dakhlaoui@yahoo.fr
|
Cite this article:
Hassen Dakhlaoui Intersubband transitions in InxAl(1-x)N/InyGa(1-y)Nquantum well operating at 1.55 μm 2014 Chin. Phys. B 23 097304
|
[1] |
Iizuka N, Kaneko K and Suzuki N 2002 Appl. Phys. Lett. 81 1803
|
[2] |
Hamazaki J, Kunugita H, Emna K, Kikuchi A and Kishino K 2005 Phys. Rev. B 71 165335
|
[3] |
Tchernycheva M, Nevou L, Doyennette L, Julien F H, Warde E, Guillot F, Monroy E, Bellet-Amalric E, Remmele T and Albrecht M 2006 Phys. Rev. B 73 125347
|
[4] |
Driscoll K, Bhattacharyya A, Moustakas T D, Paiella R, Zhou L and Smith D J 2007 Appl. Phys. Lett. 91 141104
|
[5] |
Machhadani H, Kotsar Y, Sakr S, Tchernycheva M, Colombelli R, Mangeney J, Amalric E B, Sarigiannidou E, Monroy E and Julien F H 2010 Appl. Phys. Lett. 97 191101
|
[6] |
Bellotti E, Driscoll K, Moustakas T D and Paiella R 2009 J. Appl. Phys. 105 113103
|
[7] |
Remnev M A, Kateev I Y and Elesin V F 2010 Semiconductors 44 1034
|
[8] |
Zhang W, Zhang Y, Xue J S, Zhang Y, Ling L, Zhang J C and Hao Y 2011 Appl. Phys. Lett. 99 162105
|
[9] |
Ha S H, Ban S L and Zhu J 2011 Physica B 406 3640
|
[10] |
Sakr S, Warde E, Tchernycheva M and Julien F H 2011 J. Appl. Phys. 109 023717
|
[11] |
Lin G J, Lai H K, Li C, Chen S Y and Yu J Z 2008 Chin. Phys. B 17 3479
|
[12] |
Zhang C X, Liang J Q and Nie Y H 2008 Chin. Phys. B 17 2670
|
[13] |
Zhang Y H and Wang C 2006 Chin. Phys. B 15 649
|
[14] |
Suzuki N and Iizuka N 1997 Jpn. J. Appl. Appl. Phys. 36 L1006
|
[15] |
Helman A, Tchernycheva M, Lusson A, Warde E, Julien F H, Moumanis Kh, Fishman G, Monroy E, Daudin B, Le Si Dang D, Bellet-Amalric E and Jalabert D 2003 Appl. Phys. Lett. 83 5196
|
[16] |
Kikuchi A, Bannai R, Kishino K, Lee C M and Chyi J I 2002 Appl. Phys. Lett. 81 1729
|
[17] |
Foxon C T, Novikov S V, Belyaev A E, Zhao L X, Makarovsky O, Walker D J, Eaves L, Dykeman R I, Danylyuk S V, Vitusevich S A, Kappers M J, Barnard J S and Humphreys C J 2003 Phys. Status Solidi C 0 2389
|
[18] |
Golka S, Pflügl C, Schrenk W, Strasser G, Skierbiszewski C, Siekacz M, Grzegory I and Porowski S 2006 Appl. Phys. Lett. 88 172106
|
[19] |
Bayram C, Vashaei Z and Razeghi M 2010 Appl. Phys. Lett. 96 042103
|
[20] |
Nicolay S, Carlin J F, Feltin E, Butté R, Mosca M, Grandjean N, Ilegems M, Tchernycheva M, Nevou L and Julien F H 2005 Appl. Phys. Lett. 87 111106
|
[21] |
Asif K M, Yang J W, Simin G, Gaska R, Shur M S, zur Loye H, Tamulaitis G, Zukauskas A, Smith D J, Chandrasekhar D and Bicknell-Tassius R 2000 Appl. Phys. Lett. 76 1161
|
[22] |
Kim K S, Saxler A, Kung P, Razeghi M and Lim K Y 1997 Appl. Phys. Lett. 71 800
|
[23] |
Wang Y Z, Li D, Li L, Liu N Y, Liu L, Cao W Y, Chen W H and Hu X D 2011 Chin. Phys. B 20 094297
|
[24] |
Cen L B, Shen B, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 3905
|
[25] |
Saidi I, Bouzaïene L, Gazzah M H, Mejri H and Maaref H 2006 Solid State Commun. 140 308
|
[26] |
Li J M, Lu Y W, Li D B, Han X X, Zhu Q S, Liu X L and Wang Z G 2004 J. Vac. Sci. Technol. B 22 2568
|
[27] |
Ben J A, Mejri H, Maaref H and Souissi K 1997 Semicond. Sci. Technol. 12 1388
|
[28] |
Kuzmik J 2002 Semicond. Sci. Technol. 17 540
|
[29] |
Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87 965
|
[30] |
Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
|
[31] |
Morkoç H, Cingolani R and Gil B 1999 Solid State Electron. 43 1909
|
[32] |
Cuesta J A, Sanchez A and Dominguez-Adame F 1995 Semicond. Sci. Technol. 10 1303
|
[33] |
Gmachl C, Hock M. Ng, George Chu S N and Alfred Y C 2000 Appl. Phys. Lett. 77 3722
|
[34] |
Dakhlaoui H and Jaziri S 2005 Physica B 355 401
|
[35] |
Wong K M and Allsopp D W E 2009 J. Semicond. Sci. Technol. 24 045018
|
[36] |
Huang Y and Lien C 1995 J. Appl. Phys. 77 3433
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|