Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124702    DOI: 10.1088/1674-1056/ac11d1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement

Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130000, China
Abstract  Studies show that the sample thickness is an important parameter in investigating the thermal transport properties of materials under high-temperature and high-pressure (HTHP) in the diamond anvil cell (DAC) device. However, it is an enormous challenge to measure the sample thickness accurately in the DAC under severe working conditions. In conventional methods, the influence of diamond anvil deformation on the measuring accuracy is ignored. For a high-temperature anvil, the mechanical state of the diamond anvil becomes complex and is different from that under the static condition. At high temperature, the deformation of anvil and sample would be aggravated. In the present study, the finite volume method is applied to simulate the heat transfer mechanism of stable heating DAC through coupling three radiative-conductive heat transfer mechanisms in a high-pressure environment. When the temperature field of the main components is known in DAC, the thermal stress field can be analyzed numerically by the finite element method. The obtained results show that the deformation of anvil will lead to the obvious radial gradient distribution of the sample thickness. If the top and bottom surfaces of the sample are approximated to be flat, it will be fatal to the study of the heat transport properties of the material. Therefore, we study the temperature distribution and thermal conductivity of the sample in the DAC by thermal-solid coupling method under high pressure and stable heating condition.
Keywords:  diamond anvil cell      deformation      thermal conductivity      thermal-solid coupling method  
Received:  29 April 2021      Revised:  24 June 2021      Accepted manuscript online:  07 July 2021
PACS:  47.11.Fg (Finite element methods)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  92.60.hv (Pressure, density, and temperature)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702700) and the National Natural Science Foundation of China (Grant Nos. 11674404 and 11774126).
Corresponding Authors:  Chunxiao Gao     E-mail:  2564335439@qq.com

Cite this article: 

Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓) Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement 2021 Chin. Phys. B 30 124702

[1] Walker M, Stackhouse S, Wookey J, Forte A M, Brodholt J P and Dobson D P 2014 Earth Planet. Sci. Lett. 390 175
[2] Lobanov S S, Holtgrewe N and Goncharov A F 2016 Earth Planet. Sci. Lett. 449 20
[3] Koker N 2010 Earth Planet. Sci. Lett. 292 392
[4] Ozawa H, Tateno S and Xie L 2018 High Press. Res. 38 120
[5] Saha P, Mazumder A and Mukherjee G D 2020 Geosci. Front. 11 1755
[6] Ai Q, Hu Z W, Wu L L, Sun F X and Xie M 2017 Int. J. Heat Mass Transf. 109 1181
[7] Yue D H, Ji T T, Qin T. R, Wang J, Liu C L, Jiao H, Zhao L, Han Y H and Gao C X 2018 Appl. Phys. Lett. 112 081901
[8] Hemley R J, Mao H K, Shen G Y, Badro J, Gillet P, Hanfland M and Hausermann D 1997 Science 276 1242
[9] Jing M, Wu Q and Bi Y 2013 Chin. J. High Press. Phys. 27 411
[10] Li M, Gao C X and Peng G 2007 Rev. Sci. Instrum. 78 075106
[11] Gao C X, Han Y H and MA Y Z 2005 Rev. Sci. Instrum. 76 083912
[12] Eremets M I 1996 Measurement Science and Technology 7 0597
[13] Hemley R J, Mao H K and Shen G Y 1997 Science 276 1242
[14] Mekel S, Hemley R J and MAO H K 1999 Appl. Phys. Lett. 74 656
[15] Jing Q M, Bi Y and Wu Q 2007 Rev. Sci. Instrum 78 073906
[16] Polvani D A, Fei Y, Meng J F and Badding J V 2000 Rev. Sci. Instrum 71 3138
[17] Polvani D A, Meng J F, Hasegawa M and Badding J V 1999 Rev. Sci. Instrum 70 3586
[18] Dore P L, Nucara A, Cannavò D, de Marzi G, Calvani P L, Marcelli A, Sussmann R S, Whitehead A J, Dodge C N, Krehan A J and Peter H J 1998 Appl. Opt. 37 5731
[19] Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R and Banholzer W F 1993 Phys. Rev. B 47 14850
[20] Zain-ul-abdein M, Ijaz H and Saleem W 2017 Materials 10 739
[21] Jacobsona P and Stoupinb S 2019 Diam. Relat. Mater. 97 107469
[22] Valdez M N, Umemoto K and Wentzcovitch R M 2012 Appl. Phys. Lett. 101 1
[23] Krupka K M, Hemingway B S, Robie R A and Kerrick D M 1985 Am. Mineral. 70 261
[24] Ammann M W and Walker A M 2014 Earth Planet. Sci. Lett. 390 175
[25] Qian W S, Wang W Z, Zou F and Wu Z Q 2018 Geophys. Res. Lett. 45 665
[26] Yue D H, Gao Y, Zhao L, Yan Y L, Ji T T, Han Y H and Gao C X 2019 Jpn. J. Appl. Phys. 58 040906
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[5] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[6] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[11] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[12] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[13] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
No Suggested Reading articles found!