Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014210    DOI: 10.1088/1674-1056/ac20c2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Hidden symmetry operators for asymmetric generalized quantum Rabi models

Xilin Lu1, Zi-Min Li1, Vladimir V Mangazeev1, and Murray T Batchelor,2,3,†
1 Department of Theoretical Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia;
2 Mathematical Sciences Institute, Australian National University, Canberra ACT 2601, Australia;
3 Centre for Modern Physics, Chongqing University, Chongqing 40444, China
Abstract  The hidden $\mathbb{Z}_2$ symmetry of the asymmetric quantum Rabi model (AQRM) has recently been revealed via a systematic construction of the underlying symmetry operator. Based on the AQRM result, we propose an ansatz for the general form of the symmetry operators for AQRM-related models. Applying this ansatz we obtain the symmetry operator for three models: the anisotropic AQRM, the asymmetric Rabi--Stark model (ARSM), and the anisotropic ARSM.
Keywords:  light-matter interaction      hidden symmetry      asymmetric quantum Rabi model      asymmetric Rabi-Stark model  
Received:  10 May 2021      Revised:  12 August 2021      Accepted manuscript online:  06 September 2021
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.60.+i (Zeeman and Stark effects)  
  11.30.-j (Symmetry and conservation laws)  
Fund: Project supported by the Australian Research Council (Grant Nos. DP170104934 and DP180101040).
Corresponding Authors:  Murray T Batchelor     E-mail:  murray.batchelor@anu.edu.au

Cite this article: 

Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor Hidden symmetry operators for asymmetric generalized quantum Rabi models 2022 Chin. Phys. B 31 014210

[1] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A: Math. Theor. 50 113001
[2] Braak D 2019 Symmetry 11 1259
[3] Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
[4] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005
[5] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[6] Braak D 2011 Phys. Rev. Lett. 107 100401
[7] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[8] Zhong H, Xie Q, Guan X, Batchelor M T, Gao K and Lee C 2014 J. Phys. A: Math. Theor. 47 045301
[9] Maciejewski A J, Przybylska M and Stachowiak T 2014 Phys. Lett. A 378 3445
[10] Li Z M and Batchelor M T 2015 J. Phys. A: Math. Theor. 48 454005
[11] Wakayama M 2017 J. Phys. A: Math. Theor. 50 174001
[12] Li Z M and Batchelor M T 2021 Phys. Rev. A 103 023719
[13] Tomka M, El Araby O, Pletyukhov M and Gritsev V 2014 Phys. Rev. A 90 063839
[14] Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
[15] Chen X Y, Duan L, Braak D and Chen Q H 2021 Phys. Rev. A 103 043708
[16] Eckle H P and Johannesson H 2017 J. Phys. A: Math. Theor. 50 294004
[17] Xie Y F, Duan L and Chen Q H 2019 J. Phys. A: Math. Theor. 52 245304
[18] Ashhab S 2020 Phys. Rev. A 101 023808
[19] Mangazeev V V, Batchelor M T and Bazhanov V V 2021 J. Phys. A: Math. Theor. 54 12LT01
[20] Reyes-Bustos C, Braak D and Wakayama M 2021 J. Phys. A: Math. Theor. 54 285202
[21] Grimsmo A L and Parkins S 2013 Phys. Rev. A 87 033814
[22] Cong L, Felicetti S, Casanova J, Lamata L, Solano E and Arrazola I 2020 Phys. Rev. A 101 032350
[23] Xie Y F, Chen X Y, Dong X F and Chen Q H Phys. Rev. A 101 053803
[24] Reyes-Bustos and Wakayama M arXiv: 2106.08916
[25] Lu X, Li Z M, Mangazeev V V and Batchelor M T 2021 J. Phys. A: Math. Theor. 54 325202
[26] Xie Y F and Chen Q H 2021 Phys. Rev. Research 3 033057
[27] Xie Y F and Chen Q H arXiv: 2107.08937
[1] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[2] Unconventional phase transition of phase-change-memory materials for optical data storage
Nian-Ke Chen(陈念科), Xian-Bin Li(李贤斌). Chin. Phys. B, 2019, 28(10): 104202.
[3] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[4] Light-matter interaction of 2D materials: Physics and device applications
Zi-Wei Li(李梓维), Yi-Han Hu(胡义涵), Yu Li(李瑜), Zhe-Yu Fang(方哲宇). Chin. Phys. B, 2017, 26(3): 036802.
[5] Manipulating electromagnetic waves with metamaterials:Concept and microwave realizations
He Qiong (何琼), Sun Shu-Lin (孙树林), Xiao Shi-Yi (肖诗逸), Li Xin (李欣), Song Zheng-Yong (宋争勇), Sun Wu-Jiong (孙午炯), Zhou Lei (周磊). Chin. Phys. B, 2014, 23(4): 047808.
[6] Influence of laser fields on the vibrational population of molecules and its wave-packet dynamical investigation
Wang Jun(王军), Liu Fang(刘芳), Yue Da-Guang(岳大光), Zhao Juan(赵娟), Xu Yan(许燕), Meng Qing-Tian(孟庆田), and Liu Wing-Ki. Chin. Phys. B, 2010, 19(12): 123301.
No Suggested Reading articles found!