Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 013601    DOI: 10.1088/1674-1056/25/1/013601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results

M Esen1, A T Tüzemen2, M Ozdemir3
1. Vocational School of Adana, Cukurova University, Adana 01160, Turkey;
2. Department of Science and Mathematics Education, Faculty of Education, Cumhuriyet University, Sivas 58140, Turkey;
3. Department of Physics, Cukurova University, Adana 01330, Turkey
Abstract  The mobility of clusters on a semiconductor surface for various values of cluster size is studied as a function of temperature by kinetic Monte Carlo method. The cluster resides on the surface of a square grid. Kinetic processes such as the diffusion of single particles on the surface, their attachment and detachment to/from clusters, diffusion of particles along cluster edges are considered. The clusters considered in this study consist of 150-6000 atoms per cluster on average. A statistical probability of motion to each direction is assigned to each particle where a particle with four nearest neighbors is assumed to be immobile. The mobility of a cluster is found from the root mean square displacement of the center of mass of the cluster as a function of time. It is found that the diffusion coefficient of clusters goes as D= A(T)Nα where N is the average number of particles in the cluster, A(T) is a temperature-dependent constant and α is a parameter with a value of about -0.64< α <-0.75. The value of α is found to be independent of cluster sizes and temperature values (170-220 K) considered in this study. As the diffusion along the perimeter of the cluster becomes prohibitive, the exponent approaches a value of -0.5. The diffusion coefficient is found to change by one order of magnitude as a function of cluster size.
Keywords:  diffusion constant      cluster mobility      Monte Carlo method  
Received:  15 June 2015      Revised:  04 August 2015      Accepted manuscript online: 
PACS:  36.40.Sx (Diffusion and dynamics of clusters)  
  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  68.43.Mn (Adsorption kinetics ?)  
  05.10.Ln (Monte Carlo methods)  
Corresponding Authors:  M Esen     E-mail:  mesen@cu.edu.tr

Cite this article: 

M Esen, A T Tüzemen, M Ozdemir Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results 2016 Chin. Phys. B 25 013601

[1] Voter A F 1986 Phys. Rev. B 34 6819
[2] Soler J M 1994 Phys. Rev. B 50 5578
[3] Kellogg G L 1994 Phys. Rev. Lett. 73 1833
[4] Wen J M, Chang S L, Burnett J W, Evans J W and Thiel P A 1994 Phys. Rev. Lett. 73 2591
[5] Morgenstern K, Rosenfeld G, Poelsema B and Comsa G 1995 Phys. Rev. Lett. 74 2058
[6] Bogicevic A, Liu S, Jacobsen J, Lundqvist B and Metiu H 1998 Phys. Rev. B 57 R9459
[7] Pal S and Fichthorn K A 1999 Phys. Rev. B 60 7804
[8] van Siclen C D 1995 Phys. Rev. Lett. 75 1574
[9] Khare S V, Bartelt N C and Einstein T L 1995 Phys. Rev. Lett. 75 2148
[10] Fichthorn K A and Weinberg W H 1991 J. Chem. Phys. 95 1090
[11] Heinonen J, Koponen I, Merikoski J and Ala-Nissila T 1999 Phys. Rev. Lett. 82 2733
[12] Carrey J, Maurice J L, Petroff F and Vaures A 2001 Phys. Rev. Lett. 86 4600
[13] Noh J D, Lee H K and Park H 2011 Phys. Rev. E 84 010101
[14] Lv J P, Yang X and Deng Y 2012 , Phys.Rev. E 86 022105
[15] Ehrlich G and Hudda F G 1966 J. Chem. Phys. 44 1039
[16] Schwoebel R L and Shipsey E J 1966 J. Appl. Phys. 37 3682
[17] Esen M, Tuzemen A T and Ozdemir M 2012 Eur. Phys. J. B 85 117
[18] Reuter K 2011 First-Principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status, and Frontiers, in Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System (Deutschmann O ed.) (Weinheim: Wiley-VCH) pp. 71-111
[19] Taioli S 2014 J. Mol. Model 20 2260
[20] Kodambaka S, Khare S V, Petrov I and Greene J E 2006 Surf. Sci. Rep. 60 55
[21] Khare S V and Einstein T L 1996 Phys. Rev. B 54 11752
[1] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[2] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[3] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[4] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[5] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[6] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[7] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[8] Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array
Zhang You-Tian (张又天). Chin. Phys. B, 2015, 24(8): 087502.
[9] Path integral Monte Carlo study of (H2)n@C70 (n=1,2,3)
Hao Yan (郝妍), Zhang Hong (张红), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 088103.
[10] Speckle intensity images of target based on Monte Carlo method
Wu Ying-Li (武颖丽), Wu Zhen-Sen (吴振森). Chin. Phys. B, 2014, 23(3): 037801.
[11] Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact
Wu Ying (吴英), Wang Guan-Ying (王冠鹰), Mu Qiang (穆强), Zhao Qiang (赵强). Chin. Phys. B, 2014, 23(1): 013401.
[12] Sorption and permeation of gaseous molecules in amorphous and crystalline PPX C membranes: molecular dynamics and grand canonical Monte Carlo simulation studies
Bian Liang(边亮), Shu Yuan-Jie(舒远杰), and Wang Xin-Feng(王新峰) . Chin. Phys. B, 2012, 21(7): 074208.
[13] Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols
Wang Hai-Hua(王海华) and Sun Xian-Ming(孙贤明) . Chin. Phys. B, 2012, 21(5): 054204.
[14] Hydrogen storage in BC3 composite single-walled nanotube:a combined density functional theory and Monte Carlo investigation
Liu Xiu-Ying(刘秀英), Wang Chao-Yang(王朝阳), Tang Yong-Jian(唐永建), Sun Wei-Guo(孙卫国), and Wu Wei-Dong (吴卫东). Chin. Phys. B, 2010, 19(3): 036103.
[15] Critical behaviour of the ferromagnetic Ising model on a triangular lattice
Luo Zhi-Huan(罗志环), Loan Mushtaq, Liu Yan(刘岩), and Lin Jian-Rong(林健荣). Chin. Phys. B, 2009, 18(7): 2696-2702.
No Suggested Reading articles found!