|
|
Dynamical Casimir effect in superradiant light scattering by Bose–Einstein condensate in an optomechanical cavity |
Sonam Mahajana, Neha Aggarwala b, Aranya B Bhattacherjeeb c, ManMohana |
a Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India; b Department of Physics, ARSD College, University of Delhi (South Campus), New Delhi-110021, India; c School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India |
|
|
Abstract We investigate the effects of dynamical Casimir effect in superradiant light scattering by Bose–Einstein condensate in an optomechanical cavity. The system is studied using both classical and quantized mirror motions. The cavity frequency is harmonically modulated in time for both the cases. The main quantity of interest is the number of intracavity scattered photons. The system has been investigated under the weak and strong modulations. It has been observed that the amplitude of the scattered photons is more for the classical mirror motion than the quantized mirror motion. Also, initially, the amplitude of scattered photons is high for lower modulation amplitude than higher modulation amplitude. We also found that the behavior of the plots are similar under strong and weak modulations for the quantized mirror motion.
|
Received: 21 June 2013
Revised: 19 August 2013
Accepted manuscript online:
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.75.-b
|
|
|
Corresponding Authors:
Sonam Mahajan
E-mail: sonammahajan1987@gmail.com
|
About author: 03.75.Kk; 03.75.Lm; 03.65.Ta; 03.75.-b |
Cite this article:
Sonam Mahajan, Neha Aggarwal, Aranya B Bhattacherjee, ManMohan Dynamical Casimir effect in superradiant light scattering by Bose–Einstein condensate in an optomechanical cavity 2014 Chin. Phys. B 23 020315
|
[1] |
Inguscio M, Wieman C E and Stringari S 1999 “Bose–Einstein Condensation in Atomic Gases”, International School of Physics Enrico Fermi (Amsterdam: IOS Press) Vol. 140, ISBN 9878 0 9673355 5 1
|
[2] |
Inouye S, Chikkatur A P, Stamper-Kurn D M, Stenger J, Pritchard D E and Ketterle W 1999 Science 285 571
|
[3] |
Schneble D, Torii Y, Boyd M, Streed E W, Pritchard D E and Ketterle W 2003 Science 300 475
|
[4] |
Kozuma M, Suzuki Y, Torii Y, Sugiura T, Kuga T, Hagley E W and Deng L 1999 Science 286 2309
|
[5] |
Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
|
[6] |
Kozuma M, Deng L, Hagley E W, Wen J, Lutwak R, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 82 871
|
[7] |
Bonifacio R and Salvo L D 1994 Nucl. Instrum. Methods Phys. Res. A 341 360
|
[8] |
Bonifacio R, Salvo L D, Narducci L M and D’Angelo E J 1994 Phys. Rev. A 50 1716
|
[9] |
Gasenzer T 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2337
|
[10] |
Moore M G and Meystre P 1998 Phys. Rev. A 58 3248
|
[11] |
Moore M G, Zobay O and Meystre P 1999 Phys. Rev. A 60 1491
|
[12] |
Moore M G and Meystre P 1999 Phys. Rev. Lett. 83 5202
|
[13] |
Piovella N, Gatelli M and Bonifacio R 2001 Opt. Commun. 194 167
|
[14] |
Bonifacio R, Cataliotti F S, Cola M, Fallani L, Fort C, Piovella N and Inguscio M 2004 Opt. Commun. 233 155
|
[15] |
Fallani L, Fort C, Piovella N, Cola M, Cataliotti F S, Inguscio M and Bonifacio R 2005 Phys. Rev. A 71 033612
|
[16] |
Slama S, Krenz G, Bux S, Zimmermann C and Courteille P W 2007 Phys. Rev. A 75 063620
|
[17] |
Motsch M, Zeppenfeld M, Pinkse P W H and Rempe G 2010 New J. Phys. 12 063022
|
[18] |
Bhattacherjee Aranya 2012 Commun. Theor. Phys. 58 840
|
[19] |
Corbitt T, Chen Y, Innerhofer E, Mller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S,Wipf C and Mavalvala N 2007 Phys. Rev. Lett. 98 150802
|
[20] |
Corbitt T and Marvalvala N 2004 J. Opt. B: Quantum Semi-class. Opt. 6 S675
|
[21] |
Hohberger-Metzer C and Karrai K 2004 Nature 432 1002
|
[22] |
Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Buerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
|
[23] |
Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Nature 444 71
|
[24] |
Regal C, Terfel J and Lehnert K 2008 Nat. Phys. 4 555
|
[25] |
Kleckner D and Bouwmeester D 2006 Nature 444 75
|
[26] |
Favero I, Metzger C, Camerer S, Knig D, Lorenz H, Kotthaus J P and Karrai K 2007 Appl. Phys. Lett. 90 104101
|
[27] |
Carmon T, Rokhsari H, Yang L, Kippenberg T J and Vahala K J 2005 Phys. Rev. Lett. 94 223902
|
[28] |
Schliesser A, Delaye P, Nooshi N, Vahala K J and Kippenberg T J 2006 Phys. Rev. Lett. 97 243905
|
[29] |
Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin SMand Harris J G E 2008 Nature 452 72
|
[30] |
Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
|
[31] |
Murch K W, Moore K L, Gupta S and Stamper-Kurn D M 2008 Nat. Phys. 4 561
|
[32] |
Bhattacherjee A 2009 Phys. Rev. A 80 043607
|
[33] |
Bhattacherjee A 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205301
|
[34] |
Treutlein P, Hunger D, Camerer S, Hansch T W and Reichel J 2007 Phys. Rev. Lett. 99 140403
|
[35] |
Mahajan Sonam, Kumar Tarun, Bhattacherjee Aranya B and ManMohan 2013 Phys. Rev. A 87 013621
|
[36] |
Mahajan Sonam, Aggarwal Neha, Bhattacherjee Aranya B and Man- Mohan 2013 J. Phys. B: At. Mol. Opt. Phys. 46 085301
|
[37] |
Metzger C, Ludwig M, Neuenhahn C, Ortlieb A, Favero I, Karrai K and Marquardt F 2008 Phys. Rev. Lett. 101 133903
|
[38] |
Braginsky V and Manukin A 1967 Sov. Phys. JETP 25 653
|
[39] |
Braginsky V, Manukin A and Tikhonov M Y 1970 Sov. Phys. JETP 31 829
|
[40] |
Cohadon P F, Heidmann A and PinardM1999 Phys. Rev. Lett. 83 3174
|
[41] |
Poggio M, Degen C L, Mamin H J and Rugar D 2007 Phys. Rev. Lett. 99 017201
|
[42] |
Meiser D and Meystre P 2006 Phys. Rev. A 73 033417
|
[43] |
Moore G T 1970 J. Math. Phys. 11 2679
|
[44] |
Dodonov V V 2010 Phys. Scr. 82 038105
|
[45] |
Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
|
[46] |
Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson J R, Duty T, Nori F and Delsing P 2011 Nature 479 376
|
[47] |
Lahteenmaki P, Paraoanua G S, Hasselb J and Hakonen P J 2013 Proc. Natl. Acad. Sci. 110 4234
|
[48] |
Zhang X, Zhang T Y, Tian T and Pan S M 2011 Chin. Phys. Lett. 28 064202
|
[49] |
Dodonov A V, Nardo R Lo, Migliore R, Messina A and Dodonov V V 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225502
|
[50] |
Dodonov A V 2011 Phys. Lett. A 375 4261
|
[51] |
Dodonov A V and Dodonov V V 2012 Phys. Rev. A 85 015805
|
[52] |
Dodonov A V and Dodonov V V 2012 Phys. Rev. A 85 055805
|
[53] |
Dodonov A V and Dodonov V V 2012 Phys. Rev. A 85 063804
|
[54] |
Dodonov A V and Dodonov V V 2012 Phys. Rev. A 86 015801
|
[55] |
Kim Woo-Joong, Brownell J H and Onofrio R 2006 Phys. Rev. Lett. 96 200402
|
[56] |
Brownell J H, Kim W J and Onofrio R 2008 J. Phys. A: Math. Theor. 41 164026
|
[57] |
Mahajan Sonam, Aggarwal Neha, Kumar Tarun, Bhattacherjee A B and ManMohan 2013 arXiv: 1306.1989 [quant-ph]
|
[58] |
Plunien G, Schutzhold R and Soff G 2000 Phys. Rev. Lett. 84 1882
|
[59] |
ScullyMO and ZubairyMS 1997 Quantum Optics (Cambridge: Cambridge University Press)
|
[60] |
Dodonov V V, Kilmov A B and Man’ko V I 1990 Phys. Rev. Lett. A 149 225
|
[61] |
Jaekel M T and Reynaud S 1992 Quantum Opt. 4 39
|
[62] |
Sarkar S 1994 Quantum Opt. 4 345
|
[63] |
Law C K 1994 Phys. Rev. A 49 433
|
[64] |
Camerer S, Korppi M, Jckel A, Hunger D, Hnsch T W and Treutlein P 2011 Phys. Rev. Lett. 107 223001
|
[65] |
Nagorny B, Elssser Th, Richter H, Hemmerich A, Kruse D, Zimmermann C and Courteille Ph 2003 Phys. Rev. A 67 031401
|
[66] |
Cole G D 2012 Proc. SPIE 8458 845807
|
[67] |
Hunger D, Camerer S, Hnsch TW, Knig D, Kotthaus J P, Reichel J and Treutlein P 2010 Phys. Rev. Lett. 104 143002
|
[68] |
Schliesser A, Rivire R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|